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Abstract
Convolution is one of the basic building blocks of CNN

architectures. Despite its common use, standard convo-
lution has two main shortcomings: Content-agnostic and
Computation-heavy. Dynamic filters are content-adaptive,
while further increasing the computational overhead.
Depth-wise convolution is a lightweight variant, but it usu-
ally leads to a drop in CNN performance or requires a
larger number of channels. In this work, we propose the
Decoupled Dynamic Filter (DDF) that can simultaneously
tackle both of these shortcomings. Inspired by recent ad-
vances in attention, DDF decouples a depth-wise dynamic
filter into spatial and channel dynamic filters. This decom-
position considerably reduces the number of parameters
and limits computational costs to the same level as depth-
wise convolution. Meanwhile, we observe a significant
boost in performance when replacing standard convolution
with DDF in classification networks. ResNet50 / 101 get
improved by 1.9% and 1.3% on the top-1 accuracy, while
their computational costs are reduced by nearly half. Ex-
periments on the detection and joint upsampling networks
also demonstrate the superior performance of the DDF up-
sampling variant (DDF-Up) in comparison with standard
convolution and specialized content-adaptive layers. The
project page with code is available1.

1. Introduction
Convolution is a fundamental building block of convolu-

tional neural networks (CNNs) that have seen tremendous
success in several computer vision tasks, such as image
classification, semantic segmentation, pose estimation, to
name a few. Thanks to its simple formulation and opti-
mized implementations, convolution has become a de facto
standard to propagate and integrate features across image
pixels. In this work, we aim to alleviate two of its main
shortcomings: Content-agnostic and Computation-heavy.
Content-agnostic. Spatial-invariance is one of the promi-
nent properties of a standard convolution. That is, convolu-
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Figure 1. Comparison between convolution, the dynamic filter,
and DDF. Top: Convolution shares a static filter among pixels
and samples. Medium: The dynamic filter generates one complete
filter for each pixel via a separate branch. Bottom: DDF decouples
the dynamic filter into spatial and channel ones.

tion filters are shared across all the pixels in an image. Con-
sider the sample road scene shown in Figure 1 (top). The
convolution filters are shared across different regions such
as buildings, cars, roads, etc. Given the varied nature of
contents in a scene, a spatially shared filter may not be op-
timal to capture features across different image regions [52,
42]. In addition, once a CNN is trained, the same convolu-
tion filters are used across different images (for instance im-
ages taken in daylight and at night). In short, standard con-
volution filters are content-agnostic and are shared across
images and pixels, leading to sub-optimal feature learning.
Several existing works [23, 48, 42, 57, 49, 45, 22, 11] pro-
pose different types of content-adaptive (dynamic) filters for
CNNs. However, these dynamic filters are either compute-
intensive [57, 23], memory-intensive [42, 22], or special-
ized processing units [11, 48, 49, 45]. As a result, most
of the existing dynamic filters can not completely replace



standard convolution in CNNs and are usually used as a
few layers of a CNN [49, 45, 42, 22], or in tiny architec-
ture [57, 23], or in specific scenarios, like upsampling [48].

Computation-heavy. Despite the existence of highly-
optimized implementations, the computation complexity of
standard convolution still increases considerably with the
enlarge in the filter size or channel number. This poses a
significant problem as convolution layers in modern CNNs
have a large number of channels in the orders of hundreds
or even thousands. Grouped or depth-wise convolutions
are commonly used to reduce the computation complexity.
However, these alternatives usually result in CNN perfor-
mance drops when directly used as a drop-in replacement
to standard convolution. To retain similar performance with
depth-wise or grouped convolutions, we need to consider-
ably increase the number of feature channels, leading to
more memory consumption and access times.

In this work, we propose the Decoupled Dynamic Fil-
ter (DDF) that simultaneously addresses both the above-
mentioned shortcomings of the standard convolution layer.
The full dynamic filter [57, 23, 49, 45] uses a separate net-
work branch to predict a complete convolution filter at each
pixel. See Figure 1 (middle) for an illustration. We observe
that this dynamic filtering is equivalent to applying atten-
tion on unfolded input features, as illustrated in Figure 3.
Inspired by the recent advances in attention mechanisms
that apply spatial and channel-wise attention [36, 50], we
propose a new variant of the dynamic filter where we de-
couple spatial and channel filters. In particular, we adopt
separate attention-style branches that individually predict
spatial and channel dynamic filters, which are then com-
bined to form a filter at each pixel. See Figure 1 (bottom)
for an illustration of DDF. We observe that this decoupling
of the dynamic filter is efficient yet effective, making DDF
to have similar computational costs as depth-wise convo-
lution while achieving better performance against existing
dynamic filters. This lightweight nature enables DDF to be
directly inserted as a replacement of the standard convolu-
tion layer. Unlike several existing dynamic filtering layers,
we can replace all k × k (k > 1) convolutions in a CNN
with DDF. We also propose a variant of DDF, called DDF-
Up, that can be used as a specialized upsampling or joint-
upsampling layer.

We empirically validate the performance of DDF by
drop-in replacing convolution layers in several classifica-
tion networks with DDF. Experiments indicate that apply-
ing DDF consistently boosts the performance while reduc-
ing computational costs. In addition, we also demonstrate
the superior upsampling performance of DDF-Up in object
detection and joint upsampling networks. In summary, DDF
and DDF-Up have the following favorable properties:

• Content-adaptive. DDF provides spatially-varying fil-
tering that makes filters adaptive to image contents.

• Fast runtime. DDF has similar computational costs as
depth-wise convolution, so its inference speed is faster
than both standard convolution and dynamic filters.

• Smaller memory footprint. DDF significantly reduces
memory consumption of dynamic filters, making it pos-
sible to replace all standard convolution layers with DDF.

• Consistent performance improvements. Replacing a
standard convolution with DDF / DDF-Up results in con-
sistent improvements and achieves the state-of-the-art
performance across various networks and tasks.

2. Related Work

Lightweight convolutions. Given the prominence of con-
volutions in CNN architectures, several lightweight vari-
ants have been proposed for different purposes. Dilated
convolutions [4, 56] increase the receptive field of the fil-
ter without increasing parameters or computation complex-
ity of the standard convolution. Several lightweight mobile
networks [17, 39, 16] use depth-wise convolutions instead
of standard ones, which separately convolve each channel.
Similarly, grouped convolutions [26] group input channels
and convolve each group separately resulting in parameter
and computation reduction. However, directly replacing a
standard convolution with depth-wise or grouped convo-
lutions usually leads to performance drops. One needs to
widen the model to achieve competitive performance with
these lightweight variants of convolution. In contrast, the
proposed DDF layer can be directly used as a lightweight
drop-in replacement to standard convolution layer.

Dynamic filters. For the dynamic filters, the filter neigh-
borhoods and/or filter values are dynamically modified or
predicted based on the input features. Some recent ap-
proaches dynamically adjust the filter neighborhoods by
adaptive dilation factors [58], estimating the neighborhood
sampling grid [8], or adapting the receptive fields [43]. An-
other kind of dynamic filters, more closely related to our
work, adjusts or predicts filter values based on input features
[55, 59, 5, 23, 48, 42, 57, 49, 45, 22]. In particular, semi-
dynamic filters, such as WeightNet [34], CondConv [55],
DyNet [59], and DynamicConv [5], predict coefficients
to combine several expert filters. The combined filter is
still applied in a convolutional manner (spatially shared).
CARAFE [48] proposes a dynamic layer for upsampling,
where an additional network branch is used to predict a 2D
filter at each pixel. However, these channel-wise shared 2D
filters cannot encode channel-specific information. Several
full dynamic filters [23, 57, 49, 45] use separate network
branches to predict a complete filter at each pixel. As illus-
trated in Figure 2 (middle) and briefly explained in the In-
troduction, these dynamic filters can only replace a few con-
volution layers or can only be used in small networks due to
computational reasons. Specifically, adaptive convolutional



(a) Decoupled Dynamic Filter Operation (DDF Op). (b) Decoupled Dynamic Filter Module (DDF Module).

Figure 2. Illustration of the DDF operation and the DDF module. The orange color denotes spatial dynamic filters / branch, and the
green color denotes channel dynamic filters / branch. The filter application means applying the convolution operation at a single position.
‘GAP’ means the global average pooling and ‘FC’ denotes the fully connected layer.

kernels [57] are only used in small networks. SOLOv2 [49]
and CondInst [45] employ dynamic filters in the last few
layers of the segmentation model. PAC [42] uses a fixed
Gaussian kernel on adapting features to modify the standard
convolution filter at each pixel, which is also impractical for
large architectures due to high memory consumption. The
proposed DDF is lightweight even compared with the stan-
dard convolution layer and thus can be used across all the
layers even in large networks.
Attention mechanisms. Inspired by the role of attention
in human visual perception [21, 38, 7, 50], several ap-
proaches [54, 47, 46, 18, 36, 50] propose to use atten-
tion layers that dynamically enhance/suppress feature val-
ues with predicted attention maps. SMemVQA [54] gen-
erates question-guided spatial attention to capture the cor-
respondence between individual words in the question and
image regions. The residual attention network [47] adopts
encoder-decoder branches to model spatial attention and re-
fine features. VSGNet [46] leverages the spatial configu-
ration of human-object pairs to model attention. Besides
spatial attention, SENet [18] introduces the squeeze-and-
excitation structure to encode channel-wise attention and re-
weights the feature channels. Subsequent methods combine
spatial and channel-wise attention. BAM [36] uses spatial
and channel-wise attention in parallel, whereas CBAM [50]
sequentially applies spatial and channel-wise attention. In
this work, we draw connections between dynamic filters and
attention layers. Inspired by spatial and channel-wise at-
tention, we propose DDF that uses decoupled spatial and
channel dynamic filters.

3. Preliminaries
Standard convolution. Given an input feature representa-
tion F ∈ Rc×n with c channels and n pixels (n = h × w,
h and w are the width and height of the feature map); the
standard convolution operation at ith pixel can be written as

a linear combination of input features around ith pixel:
F ′(.,i) =

∑
j∈Ω(i)

W [pi − pj ]F(.,j) + b, (1)

where F(.,j) ∈ Rc denotes the feature vector at jth pixel;
F ′ ∈ Rc′×n denotes output feature map with F ′(.,i) ∈ Rc′

denoting ith pixel output feature vector. Ω(i) denotes
the k × k convolution window around ith pixel. W ∈
Rc′×c×k×k is a k × k convolution filter, W [pi − pj ] ∈
Rc′×c is the filter at position offset between i and jth pix-
els: [pi − pj ] ∈ {(− (k−1)

2 ,− (k−1)
2 ), (− (k−1)

2 ,− (k−1)
2 +

1), ..., ( (k−1)
2 , (k−1)

2 )} where pi denotes 2D pixel coordi-
nates. b ∈ Rc′ denotes the bias vector. In standard convo-
lution, the same filterW is shared across all pixels and filter
weights are agnostic to input features.
Dynamic filters. In contrast to standard convolution, dy-
namic filters leverage separate network branches to gener-
ate the filter at each pixel. The spatially-invariant filterW in
Eq. 1 becomes the spatially-varying filter Di ∈ Rc′×c×k×k

in this case. The dynamic filters enable learning content-
adaptive and flexible feature embeddings. However, pre-
dicting such a large number (nc′ck2) of pixel-wise filter
values requires heavy side-networks, resulting in both com-
pute and memory intensive network architectures. Thus,
dynamic filters are usually only employed in either tiny net-
works [23, 57] or can only replace a few standard convolu-
tion layers [49, 45, 42, 22] in a CNN.

4. Decoupled Dynamic Filter
The goal of this work is to design a filtering operation

that is content-adaptive while being lighter-weight than a
standard convolution. Realizing both the properties with a
single filter is quite challenging. We accomplish this with
our Decoupled Dynamic Filter (DDF), where the key tech-
nique is to decouple dynamic filters into spatial and channel
ones. More formally, the DDF operation can be written as:



Figure 3. Connection between dynamic filters and attention.
The dynamic filter is similar to applying attention on the unfolded
feature.

F ′(r,i) =
∑

j∈Ω(i)

Dsp
i [pi − pj ]D

ch
r [pi − pj ]F(r,j), (2)

where F ′(r,i) ∈ R denotes the output feature value at the
ith pixel and rth channel, F(r,j) ∈ R denotes the input fea-
ture value at the jth pixel and rth channel. Dsp ∈ Rn×k×k

is the spatial dynamic filter with Dsp
i ∈ Rk×k denoting the

filter at ith pixel. Dch ∈ Rc×k×k is the channel dynamic
filter with Dch

r ∈ Rk×k denoting the filter at rth channel.
Figure 2(a) shows the illustration of DDF operation. We
predict both channel and spatial dynamic filters from the in-
put feature, using which we perform the above DDF opera-
tion (Eq. 2) to compute the output feature map. Comparing
general dynamic filters (See Section 3) with DDF clearly
indicates that DDF reduces the nc′ck2 sized dynamic filter
into much smaller nk2 spatial and ck2 channel dynamic fil-
ters. In addition, we implement DDF operation in CUDA
alleviating any need to save intermediate multiplied filters
during network training and inference.

DDF module. Based on DDF operation, we carefully de-
sign a DDF module that can act as a basic building block in
CNNs. For that, we want the filter prediction branches to be
lightweight as well in addition to the DDF operation itself.
We notice the connection between dynamic filters and at-
tention mechanisms, using which we design attention-style
branches to predict spatial and channel filters. Figure 3 il-
lustrates the connection between dynamic filters and atten-
tion. Applying dynamic filters on a feature map is equiva-
lent to applying attention on unfolded features. That is, we
unfold the F ∈ c×n feature map into Fu ∈ c×n×k2 fea-
ture map where neighboring feature values are unfolded as
separate channels. Applying dynamic filters on the original
feature map F is the same as re-weighting the unfolded fea-
ture map Fu using the generated filter tensor as attention.

Following the recent advances in attention literature [36,
50] that propose to use lightweight branches to predict spa-
tial and channel-wise attention, we design two attention-
style branches that can generate spatial and channel dy-
namic filters for DDF. Figure 2(b) illustrates the structure
of spatial and channel filter branches in the DDF module.
The spatial filter branch only contains one 1 × 1 convolu-
tion layer. The channel filter branch first applies the global
average pooling to aggregate input features, then generates

channel dynamic filters via a squeeze-and-excitation struc-
ture [18], where the squeeze ratio is denoted as σ ∈ R+.

As generated filter values can be extremely large or small
for some input features, directly using them for convolution
will make the training unstable. So, we propose to do filter
normalization (FN):

Dsp
i = αsp D̂

sp
i − µ(D̂sp

i )

δ(D̂sp
i )

+ βsp

Dch
r = αch

r

D̂ch
r − µ(D̂ch

r )

δ(D̂ch
r )

+ βch
r ,

(3)

where D̂sh
i , D̂ch

r ∈ Rk×k are the generated spatial and
channel filters before normalization, µ(·) and δ(·) cal-
culate the mean and standard deviation of the filter,
αsp, αch

r , β
sp, βch

r are the running standard deviation and
mean values which are similar to those coefficients in the
batch normalization (BN) [20]. FN can limit generated fil-
ter values into a reasonable range, thereby avoiding the gra-
dient vanishing/exploding during training.

4.1. Computational Complexity.

Table 1 shows the parameter, space and time complexity
comparisons between standard convolution (Conv), Depth-
wise convolution (DwConv), full dynamic filters (DyFil-
ter) [23, 57, 49, 45], and our DDF filter. For analysis, we use
the same notation as before - n : Number of pixels; c: Chan-
nel number; k : Filter size (spatial extent); σ : Squeeze ratio
in DDF channel filter branch. For simplicity, we assume
that both input and output features have c channels. We
also assume that DyFilter adopts a lightweight filter predic-
tion branch with a single 1× 1 convolution layer.
Number of parameters. The prediction branch of DyFilter
takes c channel features as input and produces c2k2 channel
output, where each pixel output corresponds to a complete
filter at that pixel. Thus, the DyFilter prediction branch has
c3k2 parameters, which is quite high even for small values
of c. For DDF, the spatial filter branch predicts filter ten-
sors with k2 channels and thus contain ck2 parameters. The
channel filter branch has σc2 parameters for the squeeze
layer, and σc2k2 parameters for the excitation layer. In to-
tal, DDF prediction branches contain ck2 + σc2(1 + k2)
parameters, which is far fewer than those for DyFilter. De-
pending on the values of σ, k, and c (usually set to 0.2, 3,
and 256), the number of parameters for the DDF module
can be even lower than a standard convolution layer.
Time complexity. The spatial filter generation of DDF
needs 2nck2 floating-point operations (FLOPs), and the
channel filter generation takes 2σc2(1 + k2) FLOPs. The
filter combination and application needs 3nck2 FLOPs. In
total, DDF needs 5nck2 + 2σc2(1 + k2) FLOPs with time
complexity of O(nck2 + c2k2). The term c2k2 can be ig-
nored since n >> c, k. Thus, the time complexity of DDF



Table 1. Comparison of the parameter number and computa-
tional costs. ‘Params’ means the number of parameters, ‘Time’
represents the time complexity, ‘Space’ denotes the space com-
plexity of generated filters.

Filter Conv DwConv DyFilter DDF

Params c2k2 ck2 c3k2 ck2 + σc2(1 + k2)
Time O(nc2k2) O(nck2) O(nc3k2) O(nck2 + c2k2)
Space – – O(nc2k2) O((n+ c)k2)

Table 2. Comparison of the inference latency and the max allo-
cated memory. The size of the input feature is set to 2 × 256 ×
200× 300, which is the common size of the P1 layer in FPN [30].
The guidance feature size of PAC is the same as the input one.

Filter Conv DwConv PAC DDF

Memory 356.3M 236.0M 3406.4M 245.7M
Latency 7.5 ms 1.0 ms 46.4 ms 3.0 ms

approximately equals toO(nck2), which is similar to that of
depth-wise convolution and better than a standard convolu-
tion with time complexity of O(nc2k2). The time complex-
ity of DyFilter is O(nc3k2), with 2nc3k2 FLOPs for filter
generation and 2nc2k2 FLOPs for filter application. Thus
the time complexity of DyFilter is almost c2 times higher
than that of DDF, which is quite significant. Table 2 com-
pares the inference time between four kinds of filters, where
we adopt PAC [42] as the representative of dynamic filters.
Refer to the supplementary for more latency comparisons
on different input sizes.
Space/Memory complexity. Table 1 also compares the
space complexity of generated filters. Standard and depth-
wise convolutions do not generate content-adaptive filters.
DyFilter generates a complete filter at each pixel with a
space complexity of O(nc2k2). DDF has a much smaller
space complexity of O((n + c)k2), since it only needs to
store 2d spatial filters with nk2 (shared by channels) and
channel filters with ck2. See Table 2 for the comparison of
the max allocated memory between four kinds of filters.

In summary, DDF has a time complexity that is simi-
lar to depth-wise convolution, which is considerably better
than a standard convolution or dynamic filter. Remarkably,
despite generating content-adaptive filters, the number of
parameters in a DDF module is still smaller than that of a
standard convolution layer. The space complexity of DDF
can be hundreds or even thousands of times smaller than full
dynamic filters, when c or n are in the orders of hundreds
which is quite common in practice.

5. DDF Networks for Image Classification
Image classification is considered as a fundamental task

in computer vision. To demonstrate the use of DDFs as
basic building blocks in a CNN, we experiment with the
widely used ResNet [15] architecture for image classifi-
cation. ResNets stack multiple basic/bottleneck blocks in

Figure 4. Structure of the DDF bottleneck block. We replace the
3× 3 convolution layer with DDF and keep the original hyperpa-
rameters, especially using the same number of channels.

which 3 × 3 convolution layers are adopted for spatial em-
bedding. We substitute these 3 × 3 convolution layers in
all stacked blocks with DDF. We refer to such a modified
ResNet with DDF as ‘DDF-ResNet’. Figure 4 illustrates
the use of DDF in a ResNet bottleneck block, we refer to it
as DDF bottleneck block.

We evaluate DDF-ResNets on the ImageNet dataset [10]
with the Top-1 and Top-5 accuracy. DDF-ResNets are
trained using the same training protocol as [27]. In partic-
ular, we train models for 120 epochs by the SGD optimizer
with the momentum of 0.9 and the weight decay of 1e-4.
The learning rate is set to 0.1 with batch size 256 and de-
cays to 1e-5 following the cosine schedule. The input image
is resized and center-cropped to 224× 224.
Ablation study. We comprehensively analyze the effect
of different components in a DDF module. We choose
ResNet50 [15] as our base network architecture and exper-
iment with different modifications to DDF. Table 3 shows
the results of ablation experiments. First, we analyze the
effect of spatial and channel dynamic filters in DDF with
classification accuracy. Table 3(a) shows there is a signif-
icant drop in performance when we replace convolutions
with only spatial dynamic filters. This is expected as spatial
dynamic filters are shared by all channels, thus cannot en-
code channel-specific information. By replacing the convo-
lution with the channel dynamic filters, the top-1 accuracy
is improved by 1.6%. Using the full DDF module, with both
spatial and channel dynamic filters, improves the top-1 ac-
curacy by 1.9%. These results show the importance of both
the spatial and channel dynamic filters in DDF.

Table 3(b) compares different normalization schemes in
a DDF module. Replacing the proposed filter normalization
with a standard batch normalization [20] or a sigmoid ac-
tivation leads to considerable drops in accuracy. Sigmoid
activation individually processes each filter value and may
not capture the correlation between them, while batch nor-
malization considers all the filters in a batch, which may
weaken the filter dynamics across samples.

We also evaluate DDF under different squeeze ratios σ,
which is used to control the feature channel compression
in the channel filter branch. As shown in table 3(c), using
higher squeeze ratios will significantly increase the number
of parameters, while only bringing marginal performance
improvements. Hence, we set the squeeze ratio to 0.2 by



Table 3. Ablation studies on the ImageNet dataset. We list the
classification performance of different DDF-ResNet50 variants,
where we use ResNet50 as the base network architecture.

(a) Effect of spatial and channel filters in DDF.

Spatial Channel Top-1 / Top-5 Acc.

Base Model 77.2 / 93.5
X 74.4 / 92.0

X 78.7 / 94.2
X X 79.1 / 94.5

(b) Comparison of different normalization schemes.

Batch-Norm Sigmoid Filter-Norm
Top-1 Acc. 76.0 78.2 79.1
Top-5 Acc. 92.0 93.8 94.5

(c) Comparisons with different squeeze ratios σ.

σ Params FLOPs Top-1 / Top-5 Acc

0.2 16.8M 2.298B 79.1 / 94.5
0.3 18.1M 2.299B 79.0 / 94.5
0.4 19.4M 2.300B 79.2 / 94.5

Table 4. Comparison against related filters on the ImageNet
dataset. ‘–’ denotes the unreported value.

Arch Conv Type Params FLOPs Top-1 Acc

R18

Base Model [15] 11.7M 1.8B 69.6
Adaptive [57] 11.1M – 70.2
DyNet [59] 16.6M 0.6B 69.0
DDF 7.7M 0.4B 70.6

R50

Base Model [15] 25.6M 4.1B 77.2
DyNet [59] – 1.1B 76.3
CondConv [55] 104.8M 4.2B 78.6
DwCondConv [55] 14.5M 2.3B 78.3
DwWeightNet [34] 14.4M 2.3B 78.0
DDF 16.8M 2.3B 79.1

default. In addition, even the parameter number increases
with enlarging the squeeze ratio, the FLOPs remain low be-
cause the computational costs of the channel filter branch
are minimal, as analyzed in Section 4.1.

Comparisons with other dynamic filters. Next, we com-
pare the use of DDF with respect to some existing dynamic
filters using different ResNet base architectures: ResNet18
(R18) and ResNet50 (R50). Table 4 shows the param-
eters, FLOPs, and accuracy comparisons. Specifically,
we compare DDF with adaptive convolutional kernel [57]
(Adaptive), DyNet [59], Conditionally parameterized con-
volutions (CondConv/DwCondConv) [55], and depth-wise
WeightNet (DwWeightNet) [34]. The ‘Adaptive’ [57] can
only be used in R18 due to its large running memory
consumption. Results show that using DDF consistently
boosts the performance of base models, while also signif-

Table 5. Comparison with state-of-the-art variants of ResNet50
and ResNet101 on the ImageNet dataset. Variants include at-
tention mechanisms: SE, BAM, CBAM, AA; and block modifi-
cations: ResNeXt, Res2Net, and our DDF. Besides official results
from the respective work, we list re-trained results (in brackets)
under the same training protocol (that we use) as in [27].

Method Params FLOPs Top-1 Acc

ResNet50 (base) [15] 25.6M 4.1B 76.0 (77.2)
SE-ResNet50 [18] 28.1M 4.1B 77.6 (77.8)
BAM-ResNet50 [36] 25.9M 4.2B 76.0
CBAM-ResNet50 [50] 28.1M 4.1B 77.3
AA-ResNet50 [2] 25.8M 4.2B 77.7
ResNeXt50 (32×4d) [53] 25.0M 4.3B 77.8 (78.2)
Res2Net50 (14w-8s) [12] 25.7M 4.2B 78.0
DDF-ResNet50 16.8M 2.3B 79.1

ResNet101 (base) [15] 44.5M 7.8B 77.6 (78.9)
SE-ResNet101 [18] 49.3M 7.8B 78.3 (79.3)
BAM-ResNet101 [50] 44.9M 7.9B 77.6
CBAM-ResNet101 [50] 49.3M 7.8B 78.5
AA-ResNet101 [2] 45.4M 8.1B 78.7
ResNeXt101 (32×4d) [53] 44.2M 8.0B 78.8 (79.5)
Res2Net101 (26w-4s) [12] 45.2M 8.1B 79.2
DDF-ResNet101 28.1M 4.1B 80.2

icantly reducing the number of parameters and FLOPs. It
is worth noting that, DwWeightNet has worse performance
than DDF, and even inferior to the channel-only DDF in Ta-
ble 3(a), although it has a similar design as the channel-only
DDF. This is due to the use of sigmoid activation during the
filter generation in DwWeightNet (more analysis in the sup-
plementary).
Comparisons with state-of-the-art ResNet variants. We
also compare DDF-ResNets with other state-of-the-art vari-
ants of ResNet50 and ResNet101 architectures in Table 5.
Specifically, we compare with attention mechanisms of
SE [18], BAM [36], CBAM [50] and AA [2]; and also
block modifications of ResNeXt [53] and Res2Net [12]. Re-
sults clearly show that DDF-ResNets achieve the best per-
formance while also having the lowest number of parame-
ters and FLOPs. DDF-ResNet50 can be further improved
by tricks in training and evaluation, and can achieve 81.3%
top-1 accuracy. Refer to the supplementary for more details.

Recently, neural architecture search (NAS) meth-
ods [44, 33] can obtain architectures with outstanding
speed/accuracy trade-off. The proposed DDF module can
also contribute to the search space of NAS methods as a
new fundamental building block.

6. DDF as Upsampling Module
An advantage of dynamic filters compared with standard

convolution is that one could predict dynamic filters from
guidance features instead of input features. Following this,
we propose an extension of the DDF module, where spa-



Figure 5. Structure of the DDF-Up module. When the upsam-
pling scale factor is set to 2, the DDF-Up module contains 4
branches. For typical upsampling, the guidance feature is pre-
dicted from input features via a depth-wise convolution layer.

(a) FPN with DDF-Up.

(b) Joint upsampling with DDF-Up.

Figure 6. Applications of the DDF-Up module. DDF-Up can be
seamlessly embedded into the top-down upsampling path in the
FPN [30] network for object detection and the decoder part of a
joint upsampling architecture.

tial dynamic filters are predicted using separate guidance
features instead of input features. Such joint filtering with
input and guidance features is useful for several tasks such
as joint image upsampling [42, 28, 29], cross-modal image
enhancement [51, 9, 6], texture removal [32] to name a few.
Figure 5 illustrates the DDF Upsampling (DDF-Up) mod-
ule, where the number of DDF operations used is set to x2

for the upsampling factor x (e.g., 4 DDF operations when
the upsampling factor is 2). We stack and pixel-shuffle [40]
the resulting features from the DDF operations to form out-
put features. For typical upsampling (without guidance), we
use the same structure with a slight modification. We com-
pute guidance features from input ones using a depth-wise
convolution layer. DDF-Up can be seamlessly integrated
into several existing CNNs, where typical/joint upsampling
operators are needed. Here we present two applications in

Table 6. Comparison of different upsampling modules in
FPN [30] on the COCO minival split. We show FLOPs (for
upsampling modules) and mAp scores on small (mApS), medium
(mApM ), large (mApL), and all-scale (mAp) objects.

Method FLOPs mApS mApM mApL mAp

Nearest (base) 0.00B 21.2 41.0 48.1 37.4
Bilinear 0.02B 22.1 41.2 48.4 37.6
Deconv [35] 12.57B 21.0 41.1 48.5 37.3
P.S. [40] 50.18B 21.4 41.5 48.6 37.7
CARAFE [48] 2.14B 22.6 42.0 49.8 38.5
DDF-Up 0.58B 22.1 42.4 49.9 38.6

object detection and joint depth upsampling tasks.

Object detection with DDF-Up. Detecting objects in an
image is one of the core dense prediction tasks in com-
puter vision. We adopt FasterRCNN [37] with the Feature
Pyramid Network (FPN) [30] as our base detection archi-
tecture and embed DDF-Up modules into FPN. FPN is an
effective U-net shaped feature fusion module, where the de-
coder pathway upsamples high-level features while combin-
ing low-level ones. As illustrated in Figure 6(a), we replace
the nearest-neighbor upsampling modules in FPN with our
DDF-Up modules.

We analyze the effectiveness of DDF-Up modules with
experiments on the COCO detection benchmark [31] which
contains 115K training and 5K validation images. We report
standard COCO [31] metrics for small (mApS), medium
(mApM ), large (mApL), and all-scale (mAp) objects on
the minival split. We implement our models based on the
MMDetection [3] toolbox and train them using the stan-
dard training protocol therein. Specifically, we train dif-
ferent models for 12 epochs using the SGD optimizer with
a momentum of 0.1 and the weight decay of 1e-4. We use
a batch size of 16 and set the learning rate to 0.2 which de-
cays by the factor of 0.1 at 8 and 11th epochs. We resize the
shorter side of the input image to 800 pixels, while keeping
the longer side no larger than 1333 pixels.

We compare DDF-Up with the generic nearest-neighbor
(Nearest) and bilinear (Bilinear) interpolations, as well
as learnable Deconvolution (Deconv) [35], Pixel Shuffle
(P.S.) [40], and CARAFE [48] upsampling modules. Ta-
ble 6 exhibits the comparison results. FPN with DDF-Up
yields a 1.2% mAp improvement over the baseline which
adopts the nearest-neighbor interpolation. DDF-Up also
brings obvious improvements against static-filtering upsam-
pler (like Deconv and P.S.), and is on par with the recent dy-
namic upsampling technique CARAFE while utilizing only
one-third of FLOPs as CARAFE.

Joint depth upsampling with DDF-Up. We analyze the
use of DDF-Up as a joint upsampling module by integrat-
ing it into a joint depth upsampling network. Here, the task
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Figure 7. 16× joint depth sampling results on sample images. DDF-Up-Net recovers more depth details compared with PAC-Net [42]
and other techniques.

is to upsample a low-resolution depth map given a higher-
resolution RGB image as guidance. This experiment al-
lows to compare DDF-Up with content-adaptive filtering
techniques such as Pixel-Adaptive Convolution (PAC) [42]
which is a current state-of-the-art for this task. We use a
similar network architecture to PAC-Net [42], where we
employ our DDF-Up modules instead of PAC joint upsam-
pling modules. We call the resulting network ‘DDF-Up-
Net’. Figure 6(b) illustrates DDF-Up-Net where we first
encode low-resolution input features from the given depth
map (X) and high-resolution guidance features (G) from
RGB images. Then, we employ DDF-Up in the decoder
to joint upsample depth features with guidance features and
obtain high-resolution depth output (Xup). Each DDF-Up
module does 2× upsampling, we sequentially use k DDF-
Up modules when the upsampling factor is 2k.

We conduct experiments on the NYU depth V2
dataset [41] which has 1449 RGB-depth pairs. Follow-
ing PAC-Net [42], we use the nearest-neighbor downsam-
pling to generate low-resolution inputs from the ground-
truth (GT) depth maps. We split the first 1000 samples for
training and the rest for testing. We train DDF-Up-Net for
1500 epochs using the Adam optimizer [24]. We use a batch
size of 8 and set the learning rate to 1e-4 which decays by
the factor 0.1 at 1000 and 1350th epochs. During train-
ing, the input images are resized and random-cropped to
256× 256.

Table 7 reports Root Mean Square Error (RMSE) scores
of different techniques for three upsampling factors, i.e.,
4×, 8×, and 16×. DDF-Up-Net performs better than
state-of-the-art techniques across all the upsampling factors.
It surpasses the standard CNN techniques like DJF [28]
and DJF+ [29] by a large margin. It also improves over
dynamic-filtering PAC [42] while reducing computational
costs by an order of magnitude. See Table 2 for the cost
comparison between PAC and DDF-Up. We visualize sam-
pled 16× upsampling results in Figure 7, where we can see
that DDF-Up-Net recovers more details compared to PAC-
Net and other techniques.

Table 7. Joint depth upsampling results on the NYU Depth V2
dataset. We exhibit RMSE results (in the order of 10−2, lower is
better) of different techniques and different upsampling factors.

Method 4× 8× 16×

Bicubic 8.16 14.22 22.32
MRF (32×4d) 7.84 13.98 22.20
GF [14] 7.32 13.62 22.03
Ham et al. [13] 5.27 12.31 19.24
FBS [1] 4.29 8.94 14.59
JBU [25] 4.07 8.29 13.35
DMSG [19] 3.78 6.37 11.16
DJF [28] 3.54 6.20 10.21
DJF+ [29] 3.38 5.86 10.11
PAC-Net [42] 2.39 4.59 8.09
DDF-Up-Net 2.16 4.40 7.72

7. Conclusion

In this work, we propose a lightweight content-adaptive
filtering technique called DDF, where our key strategy is
to predict decoupled spatial and channel dynamic filters.
We show that DDF can seamlessly replace standard con-
volution layers, consistently improving the performance of
ResNets while also reducing model parameters and compu-
tational costs. In addition, we propose an upsampling vari-
ant called DDF-Up, which boosts performance as both a
general upsampling module in detection and a joint upsam-
pling module in joint depth upsampling. DDF-Up also is
more computationally efficient compared with specialized
content-adaptive layers. Overall, DDF has rich representa-
tive capabilities as a content-adaptive filter while also being
computationally cheaper than a standard convolution, mak-
ing it highly practical to use in modern CNNs.
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