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Abstract
Although self-attention is powerful in modeling long-range dependencies, the performance of local self-attention (LSA) is
just similar to depth-wise convolution, which puzzles researchers on whether to use LSA or its counterparts, which one is
better, and what limits the performance of LSA. To clarify these, we comprehensively investigate LSA and its counterparts
from channel setting and spatial processing. We find that the devil lies in attention generation and application, where relative
position embedding and neighboring filter application are key factors. Based on these findings, we propose enhanced local
self-attention (ELSA) with Hadamard attention and the ghost head. Hadamard attention introduces the Hadamard product to
efficiently generate attention in the neighboring area, while maintaining the high-order mapping. The ghost head combines
attention maps with static matrices to increase channel capacity. Experiments demonstrate the effectiveness of ELSA.Without
architecture/hyperparameter modification, drop-in replacing LSAwith ELSA boosts Swin Transformer by up to+1.4 on top-1
accuracy. ELSA also consistently benefits VOLO fromD1 to D5, where ELSA-VOLO-D5 achieves 87.2 on the ImageNet-1K
without extra training images. In addition, we evaluate ELSA in downstream tasks. ELSA significantly improves the baseline
by up to +1.9 box Ap/+1.3 mask Ap on the COCO, and by up to +1.9 mIoU on the ADE20K.
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1 Introduction

Fromupstream to downstreamvisual tasks, vision transform-
ers (Dosovitskiy et al., 2020; Touvron et al., 2021; Carion
et al., 2020; Zheng et al., 2021; Sun et al., 2020; He et
al., 2021) have set off a revolution by achieving promis-
ing results. Behind the success, the multi-head self-attention
(MHSA) plays a critical role, which generates attentionmaps
to dynamically aggregate spatial information, leading to
greater flexibility and larger capacity. Recent studies (Raghu
et al., 2021; Yuan et al., 2021a) demonstrated that MHSA
tends to focus on local information in the first few layers of
vision transformers. Several methods (Dai et al., 2021; Chen
et al., 2021d; Yuan et al., 2022; Zhang et al., 2021) introduce
inductive bias to force earlier layers to embed local details,
which boosts the generalization ability of vision transform-
ers. As a representative of them, Swin Transformer (Liu et
al., 2021) brings locality to MHSA and makes great progress
on a wide range of visual tasks.

However, one strangephenomenonappears inSwinTrans-
former. One can achieve similar performancewhen replacing
local self-attention (LSA) in Swin Transformer with depth-
wise convolution (DwConv) (Chollet, 2017; Howard et al.,
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Fig. 1 Comparison of different layers on the Swin-T (Liu et al., 2021)
architecture. The performance of local self-attention (LSA) is just simi-
lar to depth-wise convolution (DwConv), and inferior to dynamic filters,
like DDF (Zhou et al., 2021b). Our ELSA surpasses these counterparts
by a largemarginwhile using a similar number of parameters andFLOPs
as LSA

2017) or dynamic filters. As shown in Fig. 1, we replace LSA
in Swin-T (Liu et al., 2021) with DwConv and the decoupled
dynamicfilter (DDF) (Zhou et al., 2021b). LSAonly achieves
similar top-1 accuracy as DwConv, which is lower than DDF,
but it requires more floating-point operations (FLOPs). This
phenomenon has also been observed in downstream COCO
object detection and ADE semantic segmentation tasks by
recent papers (Han et al., 2022; Yuan et al., 2022; Dai et
al., 2021; Fang et al., 2021), which motivates us to raise a
question:what limits the performance of local self-attention?

To answer this question, we thoroughly review LSA,
DwConv, and dynamic filters from two key aspects: chan-
nel setting and spatial processing.

Channel Setting. One straightforward difference between
DwConv and LSA is the channel setting. DwConv applies
different filters to different channels. LSA adopts the multi-
head strategy, which shares filters (a.k.a attention maps)
within each group of channels. In this work, we consider
the channel setting of DwConv as a special case of the multi-
head strategy, where the number of heads is set to the number
of channels. One guess is that more heads in DwConv might
be a critical factor in why it performs comparably to LSA.
However, our experiments show that even if we set the head
number of DwConv to be the same as that of LSA, DwConv
still achieves similar or better accuracy. We also find that
directly increasing the head number of LSAwill not improve
its performance.

Spatial Processing.How to obtain and apply filters (or atten-
tion maps) to gather spatial information is another difference
betweenDwConv, dynamic filters, and LSA.DwConv shares
static filters across all feature pixels in a sliding windowway.
Dynamic filters (Wang et al., 2019; Li et al., 2021a; Yuan et
al., 2022; Jia et al., 2016; Zhou et al., 2021b) employ a bypath
network, normally a 1 × 1 convolution, to generate spatial-
specific filters, and apply these filters to the neighboring area
of each pixel. LSA generates attentionmaps, which are also a

kind of spatial-specific filter, via the dot product of the query
and key matrices. LSA applies these attention maps to local
windows. In this work, we unify the above three kinds of
spatial processing into one paradigm, and fairly investigate
them from parameterization, normalization, and filter appli-
cation. We find that the neighboring filter application and the
parameterization strategy with relative position embedding
are two key factors that affect performance.

Based on these findings, we propose the enhanced local
self-attention module (ELSA) to better embed local infor-
mation. ELSA employs relative position embedding in the
parameterization strategy and applies generated attention
(filters) to neighboring areas. Beyond these, ELSA further
introduces Hadamard attention and the ghost head mod-
ule. In Hadamard attention, we replace the dot product
between queries and keys with the Hadamard product, which
is more computational-friendly in neighboring areas while
maintaining comparable performance. The ghost head com-
bines a dynamic attention map with static ghost head filters
to improve channel capacity. We empirically validate the
performance of ELSA by drop-in replacing LSA / Out-
looker (Yuan et al., 2022) in Swin Transformer (Liu et al.,
2021) / VOLO (Yuan et al., 2022). Without changing the
architecture / hyperparameter of other parts, ELSA consid-
erably improves the performance of Swin Transformer (+1.4
Top-1 Acc) and VOLO (+0.7 Top-1 Acc), while introducing
few parameters and FLOPs. In addition, we also demonstrate
the superior performance of ELSA in downstream object
detection (up to +1.9 box AP/+1.3 mask AP) and seman-
tic segmentation tasks (up to +1.9 mIoU).

In short, wemake the following contributions in thiswork:

• Extensively investigate DwConv, dynamic filters, and
LSA to empirically reveal which factors limit the per-
formance of LSA.

• Unify the special processing of DwConv, dynamic filters,
and LSA into one paradigm so that they can be treated as
the same thing with different settings.

• Propose the enhanced local self-attention (ELSA) to
better embed local details by introducing Hadamard
attention and the ghost head.

• Validate ELSA in both upstream and downstream tasks.
The use of ELSA in drop-in replacement significantly
and consistently boosts baseline methods.

2 RelatedWork

Vision Transformers Transformer (Vaswani et al., 2017) is
first proposed in the NLP task and achieves dominant perfor-
mance (Devlin et al., 2019; Brown et al., 2020). Recently, the
pioneering work ViT (Dosovitskiy et al., 2020) successfully
applies the pure transformer-based architecture to computer
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vision, revealing the potential of transformer in handling
visual tasks. Lots of follow-up studies are proposed (Graham
et al., 2021; Guo et al., 2022; El-Nouby et al., 2021; Chen et
al., 2021a; Huang et al., 2021; Mehta & Rastegari, 2021; Lu
et al., 2021;Gu et al., 2021; Chen et al., 2022, 2021e; Li et al.,
2021b; Dong et al., 2021; Yuan et al., 2021b). Many of them
analyze the ViT (Wu et al., 2021; Li et al., 2021c; Gong et al.,
2021; Chu et al., 2021; Dai et al., 2021; Xiao et al., 2021; Han
et al., 2022; Yuan et al., 2021a; Wang et al., 2022b; Raghu
et al., 2021; Pan et al., 2022) and improve it via introducing
locality to earlier layers (Dai et al., 2021; Yuan et al., 2022;
Vaswani et al., 2021; Chen et al., 2021d; Zhang et al., 2021;
Yang et al., 2021; Liu et al., 2021). In particular, Raghu et
al (Raghu et al., 2021) observe that the first few layers inViTs
focus on local information. Li et al (Yuan et al., 2021a) also
demonstrate that the first few layers embed local details. Xiao
et al (Xiao et al., 2021) and Wang et al (Wang et al., 2022a)
find that introducing inductive bias, like convolution stem,
can stabilize the training and improve the peak performance
of ViTs. Similarly, Dai et al (Dai et al., 2021) marry convolu-
tion with ViTs, improving the model generalization ability.
Swin Transformer (Liu et al., 2021, 2022a), as a milestone,
also leverages local self-attention (LSA) to embed detailed
information in high-resolution finer-level features. Despite
these successes, several studies (Han et al., 2022; Dai et al.,
2021; Yuan et al., 2022; Fang et al., 2021) observe that the
performance of LSA is just on par with depth-wise convolu-
tion (Han et al., 2022; Liu et al., 2022b). The reasons behind
this phenomenon are not clear, and in-depth comparisons
under the same conditions are valuable.

Dynamic Filters. Convolution and depth-wise convolu-
tion (Chollet, 2017) has been widely used in CNNs (He et
al., 2016; Howard et al., 2017; Sandler et al., 2018; Howard
et al., 2019; Tan & Le, 2019), while their content-agnostic
nature limits the model flexibility and capacity. To solve this
problem, dynamic filters are proposed one after another. One
kind of dynamic filter (Ma et al., 2020; Yang et al., 2019;
Zhang et al., 2020; Chen et al., 2020) predicts coefficients to
combine several expert filters which are then shared across
all spatial pixels. Another kind of dynamic filter (Jia et al.,
2016; Chen et al., 2021c; Wang et al., 2019, 2021a; Li et al.,
2021a; Su et al., 2019; Zhou et al., 2021b; Yuan et al., 2022)
generates spatial-specific filters. Specifically, the dynamic
filter networks (Jia et al., 2016) use the separate network
branches to predict a complete filter at each pixel. PAC (Su
et al., 2019) uses a fixed Gaussian kernel on adapting fea-
tures to modify the standard convolution filter at each pixel.
DRConv (Chen et al., 2021c) extends CondConv (Yang et
al., 2019) to each pixel. CARAFE (Wang et al., 2019) and
CARAFE++ (Wang et al., 2021a) are the dynamic layers for
upsampling and downsampling, where a channel-shared 2D
filter is predicted at each pixel. Similarly, Involution (Li et al.,

Fig. 2 Investigation of different channel settings. Only the number of
heads is changed each time for fair comparisons. The LSA version runs
out of memory under setting C

2021a) applies the CARAFE-like structure to feature extrac-
tion. VOLO (Yuan et al., 2022) introduces the Outlooker to
embed local details. DDF (Zhou et al., 2021b) decouples
dynamic filters to spatial and channel ones, reducing compu-
tational overhead while achieving promising results. In this
work, we observe that dynamic filters, like DDF (Zhou et al.,
2021b), perform superior to LSA. Based on comparison and
discussion, we empirically reveal the factors leading to such
a phenomenon, and propose enhanced local self-attention
(ELSA) to better embed local details.

3 Channel Setting

To figure out what limits the performance of LSA, we
first focus on one of the most obvious differences between
DwConv and LSA, i.e, the channel setting. DwConv applies
a static filter to each channel. Differently, several dynamic
filters (Wang et al., 2019; Li et al., 2021a; Yuan et al., 2022)
and LSA employ the multi-head strategy, which splits chan-
nels into multiple groups and shares the same filter within
each group. In this work, we consider the setting of DwConv
as a special case of the multi-head strategy, where the num-
ber of heads is equal to the number of channels. Therefore,
comparing channel settings between LSA and DwConv is
essentially investigating performance on different numbers
of heads.

Figure 2 shows the investigation results on the ImageNet-
1K dataset. We compare two versions of Swin-T (Liu et al.,
2021) under the same hyperparameters, and only modify the
head setting each time. Setting 1 means that the number of
heads is set to 1 for all layers. Setting 1× represents the origi-
nal setting of Swin-T, that is, the head numbers of four stages
are set to {3, 6, 12, 24}. Setting 2× means to double the orig-
inal setting, i.e, {6, 12, 24, 48}. Setting C denotes that the
number of heads is set to the number of channels for all lay-
ers. There has been a guess that more heads in the DwConv
version increase model capacity, thus may lead to compa-
rable performance. However, we find that under the same
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Fig. 3 Illustration of spatial processing strategies. DwConv applies
the static convolutional filters to the neighboring area of each pixel.
Dynamic filters generate dynamic weights and apply them to the neigh-

boring area of each pixel. Local self-attention uses the query and key
to generate a local attention map and applies it to the local window

channel setting, like 1× and 2×, the DwConv version still
achieves similar performance as the LSA one. The DwConv
version even exceeds the LSA one under setting 1, which
demonstrates that the channel setting is not the essential fac-
tor leading to the strange phenomenon.

In addition, we observe that directly setting more heads
than 1× does not benefit the LSA version. One possible rea-
son is that more heads lead to fewer channels for each head
generation, which compromises the quality of each head. As
increasing the head number of static filters (DwConv) does
benefit model performance, combining LSA with static fil-
ters is a promising idea to let LSA get benefit from more
heads.

4 Spatial Processing

As the channel setting is not the critical factor, we seek the
answer from the perspective of spatial processing. DwConv,
dynamic filters, and LSA adopt different strategies to gather
spatial information.We first review these strategies and unify
them into one paradigm. Then, we fairly compare these
strategies from three aspects.

4.1 Formulation

DwConv. DwConv does not generate filters. It shares the
static convolutional filters by sliding windows. For a given
channel, the spatial processing of DwConv can be written as

f ′
i =

∑

j∈�

w j−i f j (1)

where f ′
i ∈ R represents the output feature value at pixel i ,

f j ∈ R represents the input feature value at pixel j ,w j−i ∈ R

is the filterweightwith respect to the relative offset j−i . Take
thefilter size 3 as an example, j−i corresponds to {(−1,−1),
(−1, 0), (−1, 1), ..., (1, 1)}. � notes the neighboring area
around the pixel i . See Fig. 3a for illustration.

Dynamic Filters. Dynamic filters (Zhou et al., 2021b; Yuan
et al., 2022; Li et al., 2021a; Wang et al., 2019) generate
spatial-specific filters at each pixel via a bypath network and
apply them to the neighboring area of that pixel. For a given
channel, the spatial processing of dynamic filters can be writ-
ten as

f ′
i =

∑

j∈�

Norm�(fid j−i ) f j (2)

where f ′
i ∈ R represents the output feature value at pixel i ,

f j ∈ R represents the input feature value at pixel j , fi ∈ R
c is

the c-dimensional input feature vector at pixel i , d j−i ∈ R
c

is the filter generation weight with respect to the relative
offset j − i . Norm� represents the normalization method
applied to the generated filters, which can be the identity
mapping in Involution (Li et al., 2021a), the filter normaliza-
tion in DDF (Zhou et al., 2021b), or the softmax function in
Outlooker (Yuan et al., 2022). � notes the neighboring area
around the pixel i . Here, we omit the multi-head strategy
for simplicity. Figure3(b) illustrates this spatial processing
strategy.

LSA. Unlike dynamic filters, LSA uses attention maps of
local windows as spatial-specific filters. For a given channel,
the spatial processing of LSA can be written as

f ′
i =

∑

j∈�

Softmax�(qik j )v j (3)

where f ′
i ∈ R represents the output feature value at pixel

i , qi ,k j ∈ R
c are the c-dimensional query / key vectors at

pixel i and j , respectively. v j ∈ R is the value scalar at
pixel j . Query/key/value are generated from the input fea-
ture via linear mappings. � notes the local window area.
Softmax� represents the softmax function applied to the gen-
erated attention among local window �. Here, we omit the
multi-head strategy for simplicity. Figure3c shows the spatial
processing of LSA.
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Unified Paradigm. To unify the above spatial strategies, we
first consider d j−i in Eq. (2) as a kind of relative position
embedding, and considerw j−i in Eq. (1) as a kind of relative
position bias. Then, these spatial processing strategies can be
unified into one paradigm, which can be written as

f ′
i =

∑

j∈�

Norm�(qik j + qir
k
j−i + rqj−ik j + rbj−i )v j (4)

where� can be either the local window� or the neighboring
area �; Norm� can be either the identity mapping, the filter
normalization, or softmax; rkj−i , r

q
j−i ∈ R

c are relative posi-

tion embeddings, and rbj−i ∈ R denotes the relative position
bias.

DwConv, dynamic filters, and LSA are all special cases of
this unified paradigm. For example, when only using rbj−i as
parameterization, leveraging the identitymapping asNorm�,
and adopting the neighboring area� as�, Eq. (4)will degen-
erate to DwConv. Similarly, if the parameterization is set to
qir

k
j−i , Norm� is set to the identity mapping, and � is set

to the neighboring area �, then Eq. (4) becomes a variant of
Involution,where rkj−i is equivalent tod j−i inEq. (2).We can
also get LSA from this paradigm by changing the parameter-
ization, Norm�, and �. Therefore, the spatial processing of
LSA and its counterparts are essentially different in three fac-
tors: parameterization, normalization, and filter application.
We then investigate each factor through extensive empirical
studies.

4.2 Investigation

Parameterization. We first compare the effect of different
parameterizations by setting � as the local window and set-
ting Norm� as softmax. The results are exhibited in Table 1.
As can be seen, when applying filters to local windows,
the parameterization strategy of dynamic filters (Net2) is
better than that of the standard LSA (Net1). Also, a vari-
ant of dynamic filters (Net6) is on par with the LSA in
Swin-T.Moreover, Net7 indicates that combining the param-
eterization of LSA with dynamic filters can further boost
performance.

Normalization. Normalization is another factor that may
influence the performance. DwConv and Involution (Li et al.,
2021a) adopt identity mapping as normalization. DDF (Zhou
et al., 2021b) introduces filter normalization. LSA and Out-
looker (Yuan et al., 2022) employ the softmax function as
normalization. We fairly compare these options under the
same conditions. We choose the Net7 in Table 1 as the base-
line, andonly change thenormalizationpart each time.As can
be seen in Table 2, the identity mapping causes the training
crash, and softmax is better than the filter normalization. This

Table 1 Comparison of different parameterization

Model qik j qir
k
j−i rqj−ik j rbj−i Acc@1

Swin-T � � 81.3

Net1 � 80.1

Net2 � 80.9

Net3 � 80.9

Net4 � 79.8

Net5 � � 81.1

Net6 � � � 81.3

Net7 � � � � 81.8

Swin-T is chosen as the baseline, models are trained under the same
protocol. Acc@1 means the top-1 accuracy

Table 2 Comparison of different normalization

Model Identity Filter norm Softmax Acc@1

Net7 � Crash

� 81.4

� 81.8

We only switch the normalization of the Net7 in for fair comparison

indicates that the normalization part should not be blamed for
the limited performance of LSA.

Filter Application. The last factor of spatial processing is
how filters are applied. LSA in Swin Transformer applies
attention maps to non-overlapping local windows. In con-
trast, DwConv and dynamic filters apply filters to sliding
neighboring areas. This difference can be described as using
a different setting of � in Eq. (4). We choose Swin-T, Net6,
and Net7 as the baseline, and switch � in the first three
stages of those models. We implement the neighboring case
Net7 (noted as Net7-N) in two ways. The first way uses
SDC (Zhang et al., 2021) to save GPU memory, so that we
can train Net7-N on one node (8× V100) like other models.
The second way uses the unfold operation, which consumes
huge GPU memories and requires two nodes (16× V100) to
train. Table 3 shows the comparison results. When applying
filters to neighboring areas, both Net6 and Net7 get signifi-
cantly improved, indicating that the neighboring application
is critical for the final performance.

4.3 Discussion

Key Factors. Based on the above investigations, the fac-
tors that limit LSA can be summarized in two folds: one
key factor affecting performance is relative position embed-
dings. Net5 and Net6 with relative position embedding rkj−i

and rqj−i achieve similar performance as Swin-T. Net7 fur-
ther surpasses Swin-T by 0.5% on top-1 accuracy. The other
critical factor is the filter application. Applying filters on
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Table 3 Comparison of different filter applications

Model Local window Neighboring Acc@1

Swin-T � 81.3

� 81.4

Net6 � 81.3

� 82.0

Net7 � 81.8

� 82.0†

� 82.4‡

We only switch the setting of the � in Eq. (4) for a fair comparison.
†Denotes that the model is implemented using SDC and trained on a
single node. ‡ denotes that the model is implemented using the unfold
operation and trained on multiple nodes

query-centered neighboring areas considerably boosts the
performance of Net6 and Net7. So far, we can empirically
answer the question we raised at the beginning. The reason
why DwConv can match the performance of LSA is because
of the neighboring filter application. Without that, DwConv
degenerates to a variant similar to Net4, which is inferior to
LSA. Similarly, the reasons why DDF performs better than
LSA are because of the relative position embedding and the
neighboring filter application. Integrating these factors into
LSA (Net7-N) achieves the best performance among all these
variants.

Local Window v.s. Neighboring. The peak performance
of the local window version is worse than the neighboring
one. One possible reason is that the local window with win-
dow shifting may not be sufficient for information exchange.
Another disadvantage of the local window is that it limits the
macro-architecture design. One has to set pairs of layers at
each stage to implement window shifting.

There is no such thing as a free lunch. The drawback of
the neighboring version is low throughput. It is not easy to
calculate the dot product between quires and keys in slid-
ing neighboring areas. It requires sliding chunk (Zhang et
al., 2021), unfold operations, or specialized CUDA imple-
mentations, which are either memory-consuming or time-
consuming. How to avoid the dot product while maintaining
good performance is a challenging problem.

Comparisonwith ConcurrentWork. (Han et al. 2022) also
observe that LSA achieves similar performance to DwConv
in Swin Transformer and conduct extensive experiments to
discuss this interesting phenomenon. However, this paper
differs from them in the method unification and conclusion.

(Han et al. 2022) unify LSA and DwConv in terms of
sparse connectivity, weight sharing, and dynamic weight.
Instead of general summarizing, we first unify three oper-
ations into one equation, then split each different factor one

by one, which provides more detailed information and, more
importantly, comes to a different conclusion.

(Han et al. 2022) claim that weight sharing across posi-
tions is the key reason that boosts the performance of
DwConv. Instead, we observe that the key reason for
improving the performance of DwConv is the filter appli-
cation rather than weight sharing. See Net4 in Table 1,
the weights of Net4 are parameterized by relative bias rbj−i ,
which are shared across positions. Even so, the performance
of Net4 is poor because the filters are applied to the local
window.

Note that Net4 is different from Local MLPs, but similar
to the local window version of DwConv. Local MLPs do
not share weights between internal pixels of a local window.
Instead, Net4 uses the sameweight for the internal pixels of a
local window. In other words, the weights of Local MLP are
window-wise shared, while the weights of Net4 are position-
wise shared. From the perspective of weight sharing, Net4
andDwConvare the same.ThemaindifferencebetweenNet4
and DwConv is the filter application. The weights of Net4
are applied to local windows instead of neighboring areas,
which limits the performance of Net4.

Also, see Net6 and Net7 in Table 3. The weight-sharing
strategies of these two models are unchanged between the
local window and neighboring versions. The only difference
lies in the filter application area, which affects performance
significantly.

5 Enhanced Local Self-Attention

In addition to answering the question we raised, more impor-
tantly, we design a new local self-attention module that
surpasses both the LSA in Swin Transformer and dynamic
filters. This is accomplished with our enhanced local self-
attention (ELSA), where the key techniques are Hadamard
attention and the ghost head module. For a given channel,
ELSA can be written as

f ′
i =

∑

j∈�

G(h j−i )v j (5)

where h j−i is the Hadamard attention value, G(·) notes the
ghost headmapping, f ′

i is the output feature at pixel i , and v j

is the value scalar at pixel j . Figure4 illustrates the overall
structure of ELSA.

Hadamard Attention. First, we review Net7-N and Net6-
N, which get the highest and the second-highest accuracy in
our investigation. As discussed above, Net7-N brings in diffi-
culties on implementation and inference. In the neighboring
case, qik j in Net7-N needs to be implemented using unfold,
sliding chuncks (Zhang et al., 2021), or CUDA operations,
which are either memory-consuming or time-consuming. As
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Fig. 4 Illustration of the ELSA block. ELSA can seamlessly replace
LSA or dynamic filters in models

shown in Eq.6, Net6-N removes the dot product term, thus
getting rid of difficulties in filter / attention generation.

f ′
i =

∑

j∈�

Softmax�(qir
k
j−i + rqj−ik j + rbj−i )v j (6)

However, the performance of Net6-N is slightly worse
than Net7-N.We find that the lower accuracy of Net6-N may
be due to the lower mapping order. Specifically, Net-7 can
be considered as a third-order mapping of the input, because
Net-7 contains the second-order term qik j and combine it
with the value v. However, since Net6-N removes the dot
product qik j , which becomes a second-order mapping of
the input.

One common hypothesis in deep learning is that the map-
pings with the higher order have stronger fitting ability (Lin
& Ye, 2016). Recent concurrent work HorNet (Rao et al.,
2022) also reveals the importance of higher-order mappings.
Thus, we want to design a module that maintains the third-
order mapping just like Net7-N, but without using the dot
product of the query and key matrices. To accomplish this,
we propose Hadamard attention which introduces Hadamard
product between queries and keys as the second-order term.
In terms of formulation, Hadamard attention can be written
as

h j−i = Softmax�((qi � ki )r
k
j−i + r

q
j−i (q j � k j ) + rbj−i ) (7)

where � means Hadamard product. With this simple yet
effective modification, Eq. (7) becomes a third-order rep-
resentation of the input. It is worth noting that Hadamard
attention encodes spatial correlation by addition rather than

Algorithm 1 Demo code of ghost head (PyTorch-like)

# B: batch size, C: channel size
# N: the number of pixels
# H: the number of heads, K: kernel size
# h_attn: Hadamard attention with size (B, H, N, K*K)
# lambda, gamma: hyperparameters

def init()
mul_matrix = nn.Parameters(torch.randn(C, K, K))
add_matrix = nn.Parameters(torch.zeros(C, K, K))
trunc_normal_(add_matrix, std=0.02)

def ghost_head(h_attn):
# change the size of h_attn to (B, 1, H, N, K*K)
h_attn = h_attn.unsqueeze(1)

# reshape the size of matrices
mul_matrix = mul_matrix.reshape(1, C//H, H, 1, K*K)
add_matrix = add_matrix.reshape(1, C//H, H, 1, K*K)

# combination
h_attn = (mul_matrix ** lambda) * h_attn + gamma *

add_matrix
return h_attn.reshape(B, C, N, K*K)

multiplication. See Eq. (7). (qi � ki )rkj−i comes from pixel

i , rqj−i (q j � k j ) comes from pixel j . These two terms
are summed to collect the information at pixels i and j .
Thus, even though there is no dot product term qik j in
the Hadamard attention, it is still able to embed the spa-
tial correlation between pixel i and j , just like the standard
self-attention.

In addition, Hadamard attention is easy to implement.
Unlike Net7-N that needs memory-/time-consuming oper-
ations to calculate qik j , qi � ki and q j � k j can be
implemented via simple element-wise multiplication of the
query and key feature maps. Also, rkj−i and rqj−i are equiv-
alent to 1 × 1 convolutional filters. Thus, Eq. (7) can be
implemented by feature multiplication followed by convo-
lution layers.

Ghost Head. In Sect. 3, we reveal the relation between the
number of heads and model performance. More heads than
setting 1 × cannot improve LSA, but still slightly improve
the performance of static filters (DwConv). Combining LSA
with static filters is a promising way to let LSA get ben-
efit from more heads. Based on this idea, we propose the
ghost head module which expands the original heads by
combining Hadamard attention with two static filters. The
demo code of the ghost head is summarized in Algorithm 1.
The ‘mul_matrix’ and ‘add_matrix’ are two learnable static
matrices, the ‘lambda’ and ‘gamma’ are two hyperparam-
eters. After combination, the heads of Hadamard attention
get expanded. In the real implementation, we write CUDA
operations to avoid large GPU memory consumption.

The ghost head is a cheap module. Its overhead is only
O(nc × ks × ks × n p), where nc is the number of channels,
ks is the filter size (i.e the size of neighboring areas), and n p is
the number of pixels. Recently, Refiner (Zhou et al., 2021a) is
also proposed to adjust attention after softmax. Unlike them,
the ghost head does not leverage heavy convolutions and
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linear mappings, but only uses two simple static matrices.
Also, the main purpose of the ghost head is not to refine
attention, but to enrich channel capacity.

6 Experiments

We evaluate our ELSA in the Swin Transformer and VOLO
architectures on ImageNet-1K image classification (Deng et
al., 2009), COCO object detection (Lin et al., 2014), and
ADE20K semantic segmentation (Zhou et al., 2017). For
Swin Transformer (Liu et al., 2021), we drop-in replace LSA
with ELSA without changing any architecture / hyperpa-
rameters. For VOLO (Yuan et al., 2022), we adjust several
hyperparameters of ELSA Blocks, while maintaining all
other parts unchanged.

6.1 Image Classification on ImageNet-1K

Settings. Our major evaluations are conducted on the
ImageNet-1K (Deng et al., 2009) dataset. During training, no
extra training images are used. Our code is based on Pytorch
(Paszke et al., 2019), timm (Wightman, 2019), DDF (Zhou
et al., 2021b), Swin Transformer (Liu et al., 2021), and
VOLO (Yuan et al., 2022). The detailed setups are as fol-
lows.

Swin Transformer. We replace the LSA blocks of the first
three stageswith our ELSAblocks, and trainELSA-Swin fol-
lowing (Liu et al., 2021). In particular, AdamW (Loshchilov
& Hutter, 2017) is selected as the optimizer. The base learn-
ing rate is set to 1e-3, which is scaled following the linear
strategy, i.e lr = lrbase × batch_si ze

1024 , and decays follow-
ing the cosine strategy. We train models for 310 epochs,
where the first 20 epochs are used for warm-up, and the
last 10 epochs are used for cool-down. The weight decay
of 5e-2 is used. We also leverage the same augmentation and
regularization strategies as (Liu et al., 2021). Exponential
moving average (EMA) (Polyak& Juditsky, 1992; Tarvainen
&Valpola, 2017) is used in ELSA-Swin-B training. All mod-
els are trained / evaluated on 224 × 224 resolution unless
otherwise specified.

VOLO. We replace all Outlooker modules in VOLO with
ELSA. We train ELSA-VOLOs following the training pro-
tocol of VOLO. Most settings of VOLO are similar to those
of Swin Transformer, except for the following differences.
The base learning rate is set to 1.6e−3 for VOLO-D1 and
8e-4 for VOLO-D5. The Token Labeling (Jiang et al., 2021)
is used during training, thus, MixUp (Zhang et al., 2017) and
CutMix (Yun et al., 2019) are replaced byMixToken (Jiang et
al., 2021). EMA is used in ELSA-VOLO-D5 training. Please
refer to (Yuan et al., 2022) for more details.

Table 4 Evaluate different components of ELSA

HA GH Params FLOPs Acc@1

Base Model 28.3M 4.5G 81.3

� 29.0M 4.7G 82.4

� � 29.1M 4.8G 82.7

The Swin-T is chosen as the baseline. HA means Hadamard attention,
and GH denotes the ghost head module

Table 5 Comparison of models with different mapping order

Model 1st-order 2nd-order 3rd-order Acc@1

DwConv-Swin-T � 81.6

Net6-N � 82.0

Net7-N � 82.4

ELSA w/o GH � 82.4

The compared models use Swin-T as the macro-architecture and apply
filters to the neighboring area

Ablation study. We respectively analyze the effect of
Hadamard attention and the ghost head module in ELSA.We
choose Swin-T (Liu et al., 2021) as our base architecture and
experiment with different modifications to ELSA. Table 4
shows the results of ablation experiments. The performance
of Swin-T is improved by 1.1%, with only Hadamard atten-
tion. We observed another 0.3% improvement by plugging
in the ghost head.

To support our hypothesis about the high-order mapping,
we compared DwConv-Swin-T, Net6-N, Net7-N, and ELSA
without ghost head (ELSA w/o GH) in Table 5. All of these
models useSwin-Tas themacro-architecture and applyfilters
to the neighboring area. The only difference between Net6-N
(Eq.6) andNet7-N (Eq.4) is thatNet6-N lacks the third-order
term qik j in weight parameterization. The only difference
between Net6-N (Eq.6) and ELSA w/o GH (Eq.7) is that qi
andk j are replaced byqi�ki andqi�ki to perform the third-
order mapping. As can be seen in Table 5, better performance
is obtained as the mapping order is increased. By perform-
ing the third-order mapping, ELSA w/o GH obtained 0.4%
higher top-1 accuracy than Net6-N. ELSA w/o GH achieves
the same accuracy as Net7-N as they both perform the third-
order mapping. Recent concurrent work HorNet (Rao et al.,
2022) also uses higher-order mappings to improve the per-
formance of pure CNNs. Compared with HorNet, ELSA
applies dynamic kernels instead of static DwConv to pro-
vide dynamic spatial aggregation capability. Assessing the
importance of this dynamic spatial aggregation is an inter-
esting topic worthy of future study. In addition, it is expected
to achieve a more powerful network by further increasing the
order of ELSA using the structure of HorNet.

Table 6 further compares the performance between differ-
ent types of layers on both Swin Transformer and VOLO. As
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Table 6 Comparison of different layers

Architecture Layer type Params FLOPs Acc@1

Swin-T LSA 28M 4.5G 81.3

DwConv 24M 3.7G 81.6

D-DwConv 51M 3.8G 81.9

DDF 46M 3.9G 82.0

ELSA 29M 4.8G 82.7

VOLO-D1 LSA 27M – 83.8

DwConv 27M – 83.8

Outlooker 27M 7.1G 84.2

ELSA 27M 8.0G 84.7

ELSA consistently boosts baselines and surpasses compared counter-
parts, while using overhead similar to LSA

Table 7 Compare throughput of layers

Layer Type LSA DwConv Net7-N ELSA

Throughput 712 893 167 531

Acc@1 81.3 81.6 82.4 82.7

The throughput is tested on a single V100 GPU with the input size
128 × 3 × 224 × 224

can be seen, Swin-T and VOLO-D1 with ELSA respectively
achieve 82.7% and 84.7% top-1 accuracy, which surpass
other compared counterparts. Note that on the very pow-
erful baseline VOLO-D1, the Outlooker (Yuan et al., 2022)
introduced in VOLO is only 0.4% higher than DwConv, the
LSA obtains the same accuracy as DwConv, while our ELSA
exceeds DwConv by 0.9%, which is non-trivial.

Table 7 compares the throughput between Swin-T (Liu
et al., 2021), DwConv-Swin-T, Net7-N, and ELSA-Swin-
T. As discussed before, qik j in Net7-N brings difficulties
in implementation and inference. By replacing qik j with
Hadamardproduct, the throughput ofELSAsignificantly sur-
passes that of Net7-N. Since the underlying implementation
of the neighboring filter application is not as fully optimized
as DwConv or matrix multiplication, ELSA is slower than
LSA and DwConv. However, it can hopefully be improved
by better bottom-level optimization and hardware improve-
ment.

Compare with the state-of-the-art models. We compare
ELSA-Swin and ELSA-VOLO with other state-of-the-art
models in Table 8. For fair comparisons, results are split into
groups according to the number of parameters.

As can be seen, for different model sizes, our pro-
posed ELSA consistently boosts Swin Transformer and
VOLO,while introducing little overhead. In particular, ELSA
improves Swin-T, Swin-S, and Swin-B by 1.4%, 0.5%, and
0.5%, where ELSA-Swin-S is comparable to the original
Swin-Bwith two-thirds of parameters and FLOPs. Testing on

Table 8 Comparison of different backbones on the ImageNet-1K

Model Params FLOPs #Res Acc@1

T2T-ViT-14 22M 5.2G 2242 81.5

CoAtNet-0 25M 4.2G 2242 81.6

Twins-SVT-S 24M 2.9G 2242 81.7

LIT-S 21M 4.1G 2242 81.5

Swin-T 28M 4.5G 2242 81.3

SwinV2-T 28M 5.9G 2562 81.8

ConvNeXt-T 29M 4.5G 2242 82.1

VOLO-D1 27M 7.1G 2242 84.2

VOLO-D1↑384 27M 20.8G 3842 85.2

ELSA-Swin-T 29M 4.8G 2242 82.7

ELSA-VOLO-D1 27M 8.0G 2242 84.7

ELSA-VOLO-D1↑384 27M 23.3G 3842 85.7

T2T-ViT-24 64M 15.0G 2242 82.6

CoAtNet-1 42M 8.4G 2242 83.3

Twins-SVT-B 56M 8.6G 2242 83.2

LIT-M 48M 8.6G 2242 83.0

Swin-S 50M 8.7G 2242 83.0

SwinV2-S 50M 11.5G 2562 83.7

ConvNeXt-S 50M 8.7G 2242 83.1

ELSA-Swin-S 53M 9.6G 2242 83.5

CoAtNet-2 75M 15.7G 2242 84.1

Twins-SVT-L 99M 15.1G 2242 83.7

LIT-B 48M 8.6G 2242 83.4

Swin-B 88M 15.4G 2242 83.5

SwinV2-B 88M 20.3G 2562 84.2

ConvNeXt-B 89M 15.4G 2242 83.8

VOLO-D3 86M 20.9G 2242 85.4

VOLO-D3↑448 86M 92.9G 4482 86.3

ELSA-Swin-B 93M 16.7G 2242 84.0

ELSA-VOLO-D3 87M 22.3G 2242 85.7

ELSA-VOLO-D3↑448 87M 98.6G 4482 86.6

CoAtNet-3 168M 34.7G 2242 84.5

VOLO-D4 193M 44.6G 2242 85.7

VOLO-D4↑448 193M 194G 4482 86.8

Swin-L∗ 197M 34.5G 2242 86.3

Swin-L∗↑384 197M 103.9G 3842 87.3

SwinV2-L∗ 197M 47.5G 2562 86.9

SwinV2-L∗↑384 197M 115.4G 3842 87.6

ELSA-Swin-L∗ 205M 36.3G 2242 86.7

ELSA-Swin-L∗↑384 205M 106.9G 3842 87.6

the resolution of 224, ELSA-VOLO-D1 and ELSA-VOLO-
D3 yield 84.7% and 85.7% top-1 accuracy, respectively. The
performance of ELSA-VOLO-D3 matches the performance
of the original VOLO-D4. However, VOLO-D4 costs more
than 2× parameters against ELSA-VOLO-D3.Without addi-
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Table 8 continued

Model Params FLOPs #Res Acc@1

CaiT-M36↑448 271M 248G 4482 86.3

CaiT-M48↑448 356M 330G 4482 86.5

VOLO-D5 295M 72.7G 2242 86.1

VOLO-D5↑512 295M 407G 5122 87.1

ELSA-VOLO-D5 298M 78.5G 2242 86.3

ELSA-VOLO-D5↑512 298M 437G 5122 87.2

∗Denotes that the model is pretrianed on ImageNet-21K
Simply plugging in ELSA achieves state-of-the-art performance. #Res
represents resolutions used in validating / finetuning

tional images, it is very difficult to improve the accuracy of
large models under supervised training due to over-fitting.
Even so, ELSA still slightly improves VOLO-D5.

It is worth noting that all these records of ELSA-Swin are
obtained without modifying any hyperparameters in Swin
Transformers, which may not be the optimal setting for our
ELSA. For VOLO, we also keep the structure and hyper-
parameters of other parts unchanged. Under such a control
variable principle, the use of ELSA blocks still achieves
state-of-the-art. Redesigning the macro architecture / hyper-
parameters manually or by NAS may yield better Pareto
performance.

6.2 Object Detection on COCO

Settings. Object detection and instance segmentation exper-
iments are conducted on the COCO dataset. We report the
performance on the validation subset, and use the mean aver-
age precision (AP) as the metric. We evaluate ELSA-Swin
in Mask RCNN / Cascade Mask RCNN (Cai & Vasconcelos,
2018; He et al., 2017), which is a common practice in (Zhang
et al., 2021; Yang et al., 2021; Wang et al., 2021b, c; Chen
et al., 2021b). Following the common training protocol, we
applymulti-scale training, scaling the shorter side of the input
from 480 to 800 while keeping the longer side no more than
1333. AdamW (Loshchilov & Hutter, 2017) is adopted as
the optimizer with an initial learning rate of 1e-4, weight
decay of 5e-2, and batch size of 16. For fair comparisons, all
backbones are pretrained using the ImageNet-1K only, and
finetuned on the COCO with 1× schedule (12 epochs) and
3× schedule (36 epochs). Our implementation is based on
Swin Transformer (Liu et al., 2021) and mmdetection (Chen
et al., 2019).

Results. Table 9 lists experimental results. Under the 1×
schedule, ELSA-Swin-T andELSA-Swin-S (noted asELSA-
T / ELSA-S) respectively improve the corresponding base-
line by 1.9 APb and 1.8 APb. They also outperform other
methods under a 3× schedule. Mask RCNN with ELSA-
Swin-B (noted as ELSA-B) further achieves 48.8 APb under
1× schedule and achieves 49.6 APb under 3× schedule.

Table 9 Comparison of different backbones on the COCO validation
set

Mask RCNN 1× schedule 3× schedule
Backbone Params FLOPs APb APm APb APm

PVT-M 64M – 42.0 39.0 44.2 40.5

Focal-T 49M 291G 44.8 41.0 47.2 42.7

ViL-S 45M 218G 44.9 41.0 47.1 42.7

Swin-T 48M 267G 43.7 39.8 46.0 41.6

ELSA-T 49M 269G 45.6 41.1 47.5 42.7

PVT-L 81M – 42.9 39.5 44.5 40.7

Focal-S 71M 401G 47.4 42.8 48.8 43.8

ViL-M 60M 294G 47.6 43.0 48.9 44.2

Swin-S 69M 354G 46.5 42.1 48.5 43.3

ELSA-S 72M 367G 48.3 43.0 49.2 43.6

ELSA-B 112M 508G 48.8 43.1 49.6 43.9

Cascade Mask RCNN 1× schedule 3× schedule

Backbone Params FLOPs APb APm APb APm

Swin-T 86M 745G 48.1 41.7 50.5 43.7

ELSA-T 86M 748G 49.8 43.0 51.1 44.2

Swin-S 107M 838G 50.3 43.4 51.8 44.7

ELSA-S 110M 846G 51.6 44.4 52.3 45.2

Swin-B 145M 982G – – 51.9 45.0

ELSA-B 150M 987G 52.0 44.7 52.6 45.4

APb / APm denote the mean average precision of detection / segmenta-
tion

Under 1× schedule, Cascade Mask RCNNs with ELSA-
Swin-T and ELSA-Swin-S achieve 49.8 APb and 51.6 APb,
which are 1.7 APb and 1.3 APb higher than their base-
lines. They also surpass other compared methods under a
3× schedule. Note that, unlike ViL (Zhang et al., 2021)
and RegionViT (Chen et al., 2021b), ELSA-Swin does not
modify the macro architecture / hyperparameters of Swin
Transformer.

6.3 Semantic Segmentation on ADE20K

Settings. We evaluate the semantic segmentation perfor-
mance of ELSA-Swin on the ADE20K (Zhou et al., 2017),
which contains 20K training, 2K validation, and 3K testing
images, covering 150 semantic categories. Following (Liu et
al., 2021; Han et al., 2022; Yuan et al., 2022), UperNet (Xiao
et al., 2018) is selected as the baseline framework. During
training, AdamW is adopted as the optimizer. The initial
learning rate is set to 6e-5, weight decay is set to 1e-2. All
models are trained for 160K iterations with linear learning
rate decay, and a linear warmup of 1500 iterations. We use
default augmentation settings in mmsegmentation (Contrib-
utors, 2020) where the resolution of the input is set to 512 ×
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Table 10 Comparison of different backbones on the ADE20K valida-
tion set

Backbone Params FLOPs MS mIoU

Swin-T 60M 945G 45.8

Focal-T 62M 998G 47.0

Twins-SVT-S 54M – 47.1

ELSA-Swin-T 61M 946G 47.7

Swin-S 81M 1038G 49.5

Focal-S 85M 1130G 50.0

Twins-SVT-B 89M – 48.9

ELSA-Swin-S 85M 1046G 50.3

Swin-B 121M 1188G 49.7

Focal-B 126M 1354G 50.5

Twins-SVT-L 133M – 50.2

ELSA-Swin-B 126M 1193G 50.6

UperNet (Xiao et al., 2018) is adopted as the framework. All compared
backbones are pretrained with the ImageNet-1K only

512. During inference, we perform the multi-scale test. For
more details, please refer to (Liu et al., 2021; Contributors,
2020) and our code.

Results. Table 10 shows the mean IoU with multi-scale test-
ing (MS mIoU), model size (Param), and FLOPs of different
methods.Results are split into three groups based on the num-
ber of model parameters. For fair comparisons, all compared
backbones are pretrained using the ImageNet-1K only. Uper-
Net with ELSA-Swin-T is 1.9 higher on MS mIoU than the
Swin-T version. Adopting ELSA-Swin-S as the backbone
achieves 50.3 MS mIoU, which is 0.8 higher on MS mIoU
than Swin-S, and is even better than Swin-B and Twins-SVT-
L in the third group.AdoptingELSA-Swin-Bas thebackbone
further achieves 50.6MSmIoU, which is better than all other
compared methods.

7 Conclusions

In this work, we investigate LSA and its counterparts in detail
from channel settings and spatial processing to empirically
understand the reasons for the unsatisfactory performance
of LSA. It is revealed that the relative position embedding
and the neighboring filter application are critical reasons
why DwConv and dynamic filters perform similarly or better
than LSA. Based on these observations, we further pro-
pose enhanced local self-attention (ELSA) with Hadamard
Attention and the ghost head, which can seamlessly replace
LSA and its counterparts in various networks. Experiments
show that, without other architecture / hyperparameter mod-
ifications, ELSA can consistently improve the baseline,
regardless of the model size and tasks, with little overhead
being introduced.
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