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Controllable character animation remains a challenging problem, particularly in handling rare poses,
stylized characters, character-object interactions, complex illumination, and dynamic scenes. To tackle
these issues, prior work has largely focused on injecting pose and appearance guidance via elaborate
bypass networks, but often struggles to generalize to open-world scenarios. In this paper, we propose
a new perspective that, as long as the foundation model is powerful enough, straightforward model
modifications with flexible fine-tuning strategies can largely address the above challenges, taking a step
towards controllable character animation in the wild. Specifically, we introduce RealisDance-DiT, built
upon the Wan-2.1 video foundation model. Our sufficient analysis reveals that the widely adopted
Reference Net design is suboptimal for large-scale DiT models. Instead, we demonstrate that minimal
modifications to the foundation model architecture yield a surprisingly strong baseline. We further
propose the low-noise warmup and “large batches and small iterations” strategies to accelerate model
convergence during fine-tuning while maximally preserving the priors of the foundation model. In
addition, we introduce a new test dataset that captures diverse real-world challenges, complementing
existing benchmarks such as TikTok dataset and UBC fashion video dataset, to comprehensively
evaluate the proposed method. Extensive experiments show that RealisDance-DiT outperforms
existing methods by a large margin. The project page is at this linka.

Date: April 19, 2025

ahttps://thefoxofsky.github.io/project_pages/RealisDance-DiT/index

1 Introduction

Controllable character animation can be widely ap-
plied in film production, virtual digital humans, and
e-commerce promotions. This task has recently gar-
nered significant attention from both academia [27,
30, 9, 10, 36, 18, 24, 28] and industry [25, 1, 35, 2],
due to advances in generative models and increasing
demand for personalized content creation.

Existing methods [9, 30, 10, 36, 18, 24, 28] employ
the Reference Net to inject the reference character
ID, achieving significant advances in character con-
sistency. However, their performance in open scenes
remains unsatisfactory, as they struggle to address
challenges such as rare poses, stylized characters, in-
teractions between characters and objects, complex
lighting conditions, and scene changes. See Figure 2
for example. Existing methods struggle with com-

plex lighting conditions and generate a face artifact
in the silhouette frame. Also, it is difficult for exist-
ing methods to produce character-object interactions,
the generated results leave dumbbells suspended in
the air when the woman squats down. In cases of
rare poses, existing methods tend to introduce arti-
facts in body parts where the model lacks adequate
understanding. Moreover, when facing stylized char-
acters, existing methods tend to generate incorrect
body parts, such as producing a realistic face for
the comic character. Intuitively, all of these issues
can be attributed to three possible reasons: 1) the
Reference Net is not well designed and not robust
enough, 2) the main model is not powerful enough to
handle these challenges, and 3) the overall fine-tuning
is insufficient in terms of both data and iterations.

In this paper, we propose a new perspective that,
as long as the foundation model is powerful enough,
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Figure 1 Results of RealisDance-DiT. Left: Frames generated by RealisDance-DiT. Right: Evaluation on the proposed
RealisDance-Val dataset using VBench-I2V metrics. Zoom in for better visibility. Please refer to the project page for
more videos.

simple model modifications with flexible fine-tuning
strategies can unlock the potential for controllable
character animation in the wild. Specifically, we pro-
pose RealisDance-DiT, which is built upon the strong
video foundation model Wan-2.1 [29]. We only make a
few simple adjustments to Wan-2.1, including adding
condition input layers and modifying the RoPE posi-
tion encoding, which yields a superior baseline. Our
analysis reveals that applying Reference Net does
not help with such large DiT foundation models, and
even brings negative effects beyond heavy additional
overhead. This is because the existing large video
foundation model itself possesses the capability to
achieve controllable character animation in the wild.
The key lies in guiding the model to unlock this
capability, rather than adding additional complex
structures.

Given that we utilize a powerful video foundation
model, the fine-tuning strategies should prioritize
preserving prior knowledge within the model. There-
fore, we propose two flexible and effective fine-tuning
strategies to accelerate the convergence process while
maximally preserving the priors in the foundation
model. The first one is the low-noise warmup strat-
egy. Our experiments demonstrate that reducing the
amount of noise added during the early stages of fine-
tuning can speed up convergence. Samples with low
added noise are easier for the model to process than
those with high added noise. Using simpler samples
for warm-up fine-tuning helps stabilize the adaptation
to the new task, rather than starting with difficult
samples that may push the model away from the
initial local optimum established during pre-training.
The second strategy is called large batches and small
iterations. We suggest distributing the data in larger

batches and fewer iterations. Larger batch sizes en-
able the model to benefit from more informative yet
smooth gradients per update, allowing it to focus
on important factors in the downstream task, rather
than being hindered by noise in the data. Fewer
iterations help the model to keep the pre-trained pri-
ors, reducing the risk of overfitting on downstream
datasets. Together, these two strategies facilitate
faster convergence while preserving rich priors, which
is crucial for fine-tuning powerful video foundation
models.

In addition, we curated a test dataset named
RealisDance-Val, comprising 100 videos with cor-
responding conditions. This dataset features diverse
and challenging scenarios, including rare poses, styl-
ized characters, dynamic scenes, complex lighting con-
ditions, and interactions between characters and ob-
jects. It is specifically designed to evaluate the perfor-
mance of generative models in open scenes. The pro-
posed method is evaluated on the TikTok dataset [12],
UBC fashion video dataset [32], and RealisDance-
Val datasets. Experimental results demonstrate that
RealisDance-DiT performs favorably against existing
methods. Figure 1 exhibits several generated results
of RealisDance-DiT.

In short, we make the following contributions:

• Challenged the traditional view that requires heavy
reference networks to inject character ID. Instead,
we emphasize the powerful video foundation model
that naturally processes the capability of character
consistency. We only need to bring it out via
straightforward modifications.

• Proposed two flexible fine-tuning strategies to ac-
celerate convergence while maximally preserving
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Figure 2 Failure cases of existing methods. Existing
methods sometimes generate a face in the silhouette frame,
leave dumbbells suspended in the air when the woman
squats down, generate artifacts when producing the yoga
pose, and generate a realistic face for the comic character.

the built-in priors of the powerful video foundation
model.

• Collected an open-scene test dataset and provided
the field with a structurally simple, empirically
robust, and experimentally strong baseline model,
which is expected to inspire future work.

2 Related work

Controllable character animation has drawn signif-
icant attention since the GAN-based methods [21,
22, 6, 3]. Recently, with the advantage of Diffu-
sion models, several methods [27, 9, 36, 24] have
made considerable progress in photorealistic genera-
tion. Specifically, DisCo [27], an early diffusion-based
method, leverages ControlNet [33] to incorporate
both background and pose guidance and adopts the
motion module to enhance cross-frame consistency,
enabling animation generation from static reference
images. However, it injects character ID through the
CLIP [19] feature, which loses lots of detailed informa-
tion. As a result, DisCo struggles to maintain char-
acter consistency. Animate Anyone [9] injects char-
acter ID via the UNet-based Reference Net. While
this effectively preserves identity in many cases, the

method tends to fail when dealing with stylized char-
acters, complex gestures, and large camera motions.
Animate-X [24] introduces a pose indicator approach
tailored to stylized characters. RealisDance [35] in-
tegrates the 3D hand condition (HaMeR [17]) to
improve hand fidelity. HumanVid [28] attempts to
address camera motions in realistic settings. Despite
these advances, existing methods perform unsatisfac-
torily in open scenes, especially when encountering
rare poses, complex lighting conditions, character-
object interactions, and scene changes. We point
out that this is attributed to the weak image-to-
video main network used by existing methods. There
is an urgent demand for applying powerful native
video foundational models to handle challenges in
open scenes. We note that several concurrent stud-
ies [15, 5, 13] are exploring this direction. We go
beyond them by proposing simple yet effective model
modifications and two practical fine-tuning strategies.
The proposed RealisDance-DiT is a structurally sim-
ple, empirically robust, and experimentally excellent
baseline, which pushes the boundaries of controllable
animation in the wild.

3 Method

3.1 Simplemodel modifications

We build RealisDance-DiT based on Wan-2.1. Fig-
ure 3 shows several architecture modifications we
explored. Initially, we attempted to directly trans-
fer Reference Net to Wan-2.1. However, this results
in an overly large network that is difficult to fine-
tune given limited GPU resources. We had to re-
move some blocks from the Reference Net to reduce
the fine-tunable parameters. However, the down-
scaled Reference Net converges slowly and yields only
mediocre performance. Then, we experimented with
directly concatenating the reference latent to the
noise latent and fine-tuning the entire network. Sur-
prisingly, this simple design converges much quicker,
and the fine-tuned model adapts to the downstream
controllable character animation tasks excellently.
This indicates that the large native video foundation
model inherently possesses the capability to general-
ize to downstream tasks. The key is not to modify
the model architecture but to bring out its inher-
ent abilities. Based on this goal, we further try to
only fine-tune the newly introduced condition patchi-
fiers, the zero projection layer, and the self-attention
blocks. Compared to full fine-tuning, fine-tuning with
fewer parameters does not slow down convergence or
degrade the final performance, which confirms our
hypothesis.
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(a) Original Wan-2.1 (b) Reference Net variant (c) Full fine-tune (d) Self-attn fine-tune

Figure 3 Illustration of architecture modifications and fine-tunable model parameters. The proposed RealisDance-DiT
is fine-tuned under the final setting.

There are several important details to highlight. We
use the same three pose conditions as those used in
RealisDance [35], i.e., HaMeR [17], DWPose [31], and
SMPL-CS [35]. All pose conditions and the reference
image are encoded using the original Wan-2.1 VAE.
The encoded pose latents are concatenated along the
channel dimension. Then, the concatenated pose la-
tent and the reference latent are fed into the pose and
reference patchifiers, respectively. The pose patchifier
is initialized randomly, while the reference patchifier
is initialized using the weights from the noise patchi-
fier. Finally, the pose latent is added to the noise
latent, and the reference latent is concatenated with
the noise latent along the sequence length, before
being sent to the subsequent DiT blocks.

We also replace the Rotary Position Embedding
(RoPE) [23] used in self-attention with the shifted
RoPE. As illustrated in Figure 4, the reference la-
tent does not share RoPE with the noise latent. It
employs the spatially shifted RoPE at the first frame,
where the shifting is according to the height and
width of the noise latent.

Furthermore, our simple modifications can be seam-
lessly extended to the Wan-2.1 I2V model. In fact,
the final version of RealisDance-DiT is developed
based on Wan-2.1 I2V, where we omit the first frame,
apply an all-zero mask to the noise latent, and input
the reference image to the CLIP model instead of the
first frame.

3.2 Fine-tuning strategies

We further propose the low-noise warmup and “large
batches and small iterations” strategies for fast con-
vergence while preserving rich priors in Wan-2.1.

Low-noise warmup strategy. The timestep sampling
strategy is critical for the training stability and final
performance of the diffusion model. Although several
methods [4, 26, 7, 14] have explored various types of
sampling distributions, such as uniform distribution
and logit-normal distribution, all of them utilize a
fixed distribution throughout the entire training /
fine-tuning period. We argue that the timestep sam-
pling distribution should be dynamic to fit different
phases of fine-tuning. For example, at the begin-
ning of the fine-tuning process, it is ideal to sample
more small timesteps to reduce the level of added
noise. Samples with lower added noise are easier for
the model to process, thus helping to stabilize fine-
tuning in the early stages. During the middle stage of
fine-tuning, the probability of sampling intermediate
or larger timesteps should gradually increase, as this
helps the model adapt to various timesteps in the
downstream task. Based on this idea, we propose the
low-noise warmup strategy, which is implemented by
a dynamic sampling distribution.

Given the widely used uniform sampling strategy, its
probability density function can be expressed in the
following formula

f(x) =

{
1

Tmax
if 0 ≤ x ≤ Tmax

0 otherwise
, (1)

where Tmax is the maximum of the timestep, which is
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Figure 4 Illustration of spatially shifted RoPE for the
reference latent.

typically set to 1000. The proposed low-noise warmup
strategy introduces an iteration-relevant component
to the above probability density function, facilitating
dynamic timestep sampling. Its probability density
function can be expressed as below

f(x) =

{
−f(i)x+ Tmax

2
f(i) + 1

Tmax
if 0 ≤ x ≤ Tmax

0 otherwise
,

(2)
where f(i) can be any function related to fine-tuning
iteration i, with a value range in [0, 2

T 2
max

]. Here we
simply use a linear function, for example, which can
be expressed as

f(i) =

{
α 2(τ−i)

τT 2
max

if 0 ≤ i ≤ τ

0 otherwise
, (3)

where α ∈ [0, 1] is a hyperparameter that controls
the maximum value of f(i), τ notes the threshold of
maximum warmup step. Figure 5 illustrates the low-
noise warmup strategy. When iteration i is smaller
than the maximum warmup threshold τ , there is a
greater probability of sampling small timesteps. As
the iteration i increases, the probability of sampling
large timesteps rises. Once i exceeds τ , the sampling
distribution degrades to uniform sampling.

Large batches and small iterations. We recommend
fine-tuning the model with larger batches and fewer
iterations. This strategy has two benefits for fine-
tuning. On the one hand, by utilizing a larger batch
size, the model can be updated with more informative
gradients, allowing it to focus on key factors relevant
to the downstream task, without being affected by
noise in the data. Therefore, the model converges
faster and more stably. On the other hand, fewer iter-
ations reduce the risk of overfitting the downstream
dataset. We found that after the model adapted key
factors relevant to the downstream task, it began to
fit inductive biases in the downstream data. In other
words, as fine-tuning continues, the loss reduction
comes more from the model learning the inductive bi-
ases in the downstream data, such as high-frequency

Figure 5 Illustration of low-noise warmup strategy.

details. We also observed that, with more iterations,
the controllability is slightly enhanced, but the di-
versity of generated results is greatly reduced, and
the frequency of artifacts in the generated results
increases. This means that the prior gradually dis-
appears with the increase of fine-tuning iterations,
while the prior of the foundation model is crucial for
controllable character animation in open scenes.

3.3 Inference strategies

During fine-tuning, we randomly drop reference im-
ages and text prompts at a rate of 5%, allowing the
model to set the CFG [8] scale to 2 at inference. To
handle reference characters with diverse body shapes,
we also employ an optimization-based approach to
refine and replace shape parameters β of the SMPL-
X model [16]. Starting with an initial estimate of
βinit and pose obtained by GVHMR [20], we utilize
SMPLify-X to optimize β guided by estimated 2D
keypoints and human silhouettes. The objective is to
minimize the discrepancy between the projected 3D
silhouette and the reference silhouette while maintain-
ing accurate alignment of the 2D keypoints. Finally,
the refined shape parameters are used to replace the
default shape parameters of the driving pose, enabling
shape alignment between the reference characters and
the pose sequence.

4 Experiments

We compared RealisDance-DiT with several open
source methods, including MooreAA [1], Animate-
X [24], ControlNeXt [18], MimicMotion [34], and
MusePose [25]. The concurrent work OmniHu-
man [15] and HumanDiT [5] have not yet released
their code and models, so we cannot make compar-
isons. The concurrent work VACE [13] made its code
public a few days before submission, which does not
give us enough time to evaluate their methods.

Experiments are conducted on the TikTok
dataset [12], UBC fashion video dataset [32], and
RealisDance-Val datasets, where RealisDance-Val
contains 100 videos collected from the Internet,
covering various characters, scenes, rare poses,
lighting conditions, and character-object interactions.
For TikTok dataset and UBC fashion video dataset,
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Figure 6 Visualization of frames generated by RealisDance-DiT. The images with orange borders are reference images.
Zoom in for better visibility. Please refer to the project page for more videos.

we follow the evaluation settings in HumanVid [28].
Specifically, the method predicts frames within the
range [1,72) with a stride of 3, obtains a sequence
of 24 frames. The reference image is selected
as the middle frame within the prediction range.
The prediction resolution is set to 512×896. For
RealisDance-Val, the method predicts the first 5
seconds of the video at a resolution of 576×1024 or
1024×576 according to the original aspect ratio. We
manually select the most informative frame as the
reference image.

We train two versions of RealisDance-DiT: one for ab-
lation experiments and the other as the final version.
The RealisDance-DiT used for the ablation experi-
ments is based on the Wan-2.1 T2V 1.3B model and
trained on a dataset containing 204.8k high-quality
videos bought from vendors. The final version of
RealisDance-DiT is based on the Wan-2.1 I2V 14B
model and trained on a dataset comprising 1M high-
quality videos bought from vendors. Both training
datasets exclude the three test datasets mentioned
above to ensure that no test data is used during
training. During training, we employ AdamW as the
optimizer and set the learning rate to 1e-5.

4.1 Overall comparisons

Qualitative evaluation and comparisons. Figure 6 visu-
alizes several video frames generated by RealisDance-
DiT. As can be seen from the first two rows of the
figure, RealisDance-DiT effectively handles the inter-
actions between characters and objects. For example,
in the first row, the paddle moves naturally as the
character rows the boat, and in the second row, the
broom moves naturally as the character sweeps the
floor. The third row shows the generation capabili-
ties of RealisDance-DiT in complex lighting scenar-
ios, where it accurately renders light and shadow on
the character according to physical principles. The
fourth row evaluates the performance of RealisDance-
DiT under rare poses. When the pose estimation
is accurate, the model generates smooth, physically
consistent videos. The fifth row demonstrates that
RealisDance-DiT generalizes to characters of various
body shapes and styles. Finally, the last row shows
the potential of RealiDance-DiT for application in
multiple character scenarios.

Figure 7 qualitatively compares RealisDance-DiT
with existing methods and products. In the first
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Figure 7 Qualitative comparisons between RealisDance-DiT and other methods. Zoom in for better visibility. Please
refer to the project page for more videos.

row of Figure 7, the reference image depicts a man
playing basketball. ControlNeXt [18] effectively gen-
erates the man’s movements, but the basketball disap-
pears from the scene. In contrast, RealisDance-DiT
not only successfully generates the basketball, but
also ensures that the basketball bounces realistically
after landing during dribbling. In the second row,
Animate-X [24] fails to generate legs when facing
complex yoga poses. In the third row, when deal-
ing with animated characters, the human body parts
generated by MooreAA exhibit numerous artifacts.
For instance, in the third row, the model fails to
accurately represent what the arms should look like
in different poses. In contrast, the proposed method
generalizes well to anime characters, thanks to the
priors inherited from Wan-2.1. In the fourth row,
MimicMotion fails to generate the dynamic scene
caused by camera motion, while RealisDance-DiT
can effectively handle camera motion and maintain
detail consistency with the reference image. In the
fifth row, when addressing complex lighting condi-
tions, the shadows produced by MusePose do not
align with the poses of the character. In contrast,
RealisDance-DiT generates more accurate shadows
that correspond to the dance movements. In the last
row, we compare RealisDance-DiT with a commercial
product from ViggleAI. As can be seen, the proposed
method effectively handles the interaction between
the character and the dog when the character spins.
However, in the results generated by ViggleAI, the
dog is always suspended in the air, and the character

disappears when she turns back.

Quantitative comparisons. For all quantitative eval-
uations, we select the same frames across different
methods to calculate FID and FVD, ensuring fairness
in the comparisons. Table 2 shows the quantitative
evaluation on the TikTok dataset. It is worth not-
ing that, as we follow the setting in HumanVid [5],
we use the last 40 videos from the TikTok dataset
out of a total of 340 videos as the test set. There-
fore, for several methods like MooreAA, these data
could be included in their training data. Even under
such an unfair comparison, RealisDance-DiT achieves
the best FVD and FID values among the compared
methods. Table 3 presents the comparison results
on the UBC fashion video dataset. Since the UBC
fashion video dataset is not utilized as training data
by any other methods, this comparison is more equi-
table. RealisDance-DiT achieves competitive results,
ranking either first or second across all evaluation
metrics.

The above two datasets are too naïve to effectively
evaluate the model capabilities in real-world scenar-
ios. Therefore, we have collected a new test dataset,
RealisDance-Val, to evaluate existing methods. Un-
like the previous settings, we do not use low-level
metrics such as SSIM, PSNR, and LPIPS, because
our test set encompasses a wider range of open scenes,
where the background of some test videos may change.
Consequently, the model must generate new content
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Method I2V I2V Subject BG Temporal Motion Dynamic Aesthetic FVD↓ FID↓Subject↑ BG↑ Consist↑ Consist↑ Flicker↑ Smooth↑ Degree↑ Quality↑

Animate-X 96.06 96.59 93.83 94.83 97.40 98.52 53 55.22 855.87 34.32
ControlNeXt 92.91 93.92 91.41 93.57 96.91 98.05 63 55.57 810.82 37.24
MimicMotion 92.79 93.80 91.10 93.20 96.78 98.20 59 53.31 783.55 40.19
MooreAA 92.33 93.35 93.12 93.77 95.20 96.74 68 56.08 867.48 35.50
MusePose 92.24 93.01 93.88 94.88 97.88 98.57 57 56.28 1049.06 42.02

RealisDance-DiT 95.97 96.57 93.91 95.83 97.76 98.71 66 57.93 563.28 24.79

Table 1 Quantitative Results on the RealisDance-Val. RealisDance-DiT ranks either first or second across all evaluation
metrics. Especially for FVD and FID, RealisDance-DiT outperforms all compared methods by a large margin.

Method SSIM↑ PSNR↑ LPIPS↓ FVD↓ FID↓

Animate-X 0.7427 16.71 0.2854 508.63 32.77
ControlNeXt 0.7282 16.31 0.2958 548.01 33.48
MimicMotion 0.7507 19.30 0.2203 472.51 34.88
MooreAA 0.7636 18.62 0.2296 501.22 37.28
MusePose 0.7566 18.20 0.2484 532.75 41.99

RealisDance-DiT 0.7170 17.55 0.2613 458.81 30.39

Table 2 Quantitative Results on the TikTok dataset.

Method SSIM↑ PSNR↑ LPIPS↓ FVD↓ FID↓

Animate-X 0.8931 22.15 0.0691 70.47 10.11
ControlNeXt 0.8530 18.48 0.1320 143.02 13.82
MimicMotion 0.9126 23.80 0.0605 80.89 15.40
MooreAA 0.8795 20.83 0.0929 149.66 21.74
MusePose 0.8955 22.20 0.0665 96.17 14.95

RealisDance-DiT 0.9083 23.33 0.0526 72.94 10.81

Table 3 Quantitative Results on the UBC fashion video
dataset.

based on the background of the reference images.
However, since the background occupies the majority
of the frame, the difference between the newly gen-
erated background and the ground truth will result
in low values for those low-level metrics, even if the
new content is very realistic. Therefore, we utilize
Vbench-I2V [11] as the metric for the RealisDance-
Val dataset. Table 1 exhibits the comparison results
on the RealisDance-Val dataset. RealisDance-DiT
ranks either first or second across all evaluation met-
rics. Especially for FVD and FID, RealisDance-DiT
outperforms all compared methods by a large margin.

4.2 Ablation studies

Modeldesigns. We conducted ablation experiments to
investigate the architectural designs and fine-tunable
parameters of RealisDance-DiT, which is built on
the Wan-2.1 I2V 14B model. Table 4 compares four
settings: a Reference Net variant, a lightweight Ref-
erence Net variant, simple modifications with full

Ref. Net Light Ref. Net Full Ft. Part Ft.

FID OOM 31.01 25.58 24.79
FVD OOM 678.98 519.22 563.28

Table4 Comparisons between different fine-tuning designs.

fine-tuning, and simple modifications with part fine-
tuning. The Reference Net variant is too heavy to
be fine-tuned using limited GPU resources. There-
fore, we pruned some blocks from the Reference Net.
Specifically, each block in the Reference Net corre-
sponds to every five blocks in the main network. We
observed that such a lightweight Reference Net vari-
ant converges slowly, even with extra fine-tunable
parameters, which achieves only 31.01 in FID and
678.98 in FVD. While simple modifications, whether
through full fine-tuning or part fine-tuning, can lead
to stronger baselines. This is because the current
large video foundation models are already power-
ful enough, which can easily adapt to downstream
tasks using their built-in priors. We should make
as few modifications as possible and bring out its
capabilities for downstream tasks. Furthermore, as
demonstrated, part fine-tuning will not degrade the
final performance. This is because the foundation
model is large enough that fine-tuning a subset of
the parameters is adequate to adapt to downstream
tasks.

Low-noise warmup strategy. We compare the low-
noise warmup strategy against fixed uniform timestep
sampling and a high-noise warmup counterpart. For
this comparison, we train RealisDance-DiT based on
the Wan-2.1 T2V 1.3B model. Figure 8 illustrates
the smoothed training loss curves. As shown, the
low-noise warmup strategy accelerates convergence
compared to the standard fixed uniform timestep
sampling. Additionally, Figure 8 demonstrates that
the high-noise warmup counterpart slows down con-
vergence, further confirming our hypothesis that low-
noise samples are crucial for stabilizing the early
stages of fine-tuning.
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Figure 8 Visualization of smoothed training loss curves.

Figure 9 Visualization of different batch configurations
on the RealisDance-Val dataset. ‘#’ denotes the batch
size. Zoom in for better visibility.

Large batches and small iterations. We evaluate vari-
ous batch and iteration settings for RealisDance-DiT,
utilizing the Wan-2.1 T2V 1.3B model as the foun-
dation for this experiment. This evaluation aims to
determine how different batch configurations impact
convergence speed. Due to limited GPU resources,
we implement large batches using gradient accumu-
lation. Figure 9 visualizes the generated frames cor-
responding to different batch configurations at var-
ious iterations. We can see that larger batches get
faster convergence speed, even with the same learning
rate. Furthermore, we observed that as iterations
increase, the conditional controllability slightly im-
proves, however, the diversity of the generated results
significantly decreases, and numerous artifacts are
introduced. As shown in the figure 9, the model
fine-tuned with a batch size of 8 loses the ability to
preserve the background at iteration 36k, causing the
background to completely transform into artifacts.
This is because fine-tuning with too many iterations
will make the model overfit the downstream data
and lose its original prior. Therefore, we suggest
using a large batch size along with a small number
of iterations for fine-tuning, which facilitates rapid
convergence while maximally preserving the prior
knowledge of the foundation model.

Figure10 Illustration of limitation cases. RealisDance-DiT
tends to generate a static background when the character
and the camera are relatively stationary.

5 Limitations

There are two cases where RealisDance-DiT may not
produce satisfactory results. The first case is when
all three estimated poses are incorrect for extremely
complex poses. In this case, RealisDance-DiT tends
to generate random poses and introduces artifacts.
The second case is when the character and the camera
are relatively stationary, for example, the character is
skiing with a GoPro or riding a motorcycle towards
the camera, see the illustration in Figure 10. In
this case, RealisDance-DiT tends to generate a static
background instead of a background that gradually
recedes. These issues need to be addressed in future
work.

6 Conclusion

In this paper, we present RealisDance-DiT, a simple
yet powerful baseline that makes progress towards
controllable character animation in the wild. We
emphasize that as long as the foundation model is
powerful enough, straightforward model modifica-
tions with flexible fine-tuning strategies can yield
a superior baseline. This is because such a large
native video foundation model inherently can gener-
alize to downstream tasks. Furthermore, we propose
two fine-tuning strategies that speed up the model
convergence while maximally preserving the built-in
priors. Experiments are conducted on the TikTok
dataset, the UBC fashion video dataset, and the pro-
posed RealisDance-Val datasets. Both qualitative
and quantitative experimental results demonstrate
that RealisDance-Val significantly outperforms the
other compared methods, qualifying it as a solid
baseline for future research.
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