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Abstract

In recent years, diffusion models have revolutionized visual
generation, outperforming traditional frameworks like Gen-
erative Adversarial Networks (GANs). However, generating
images of humans with realistic semantic parts, such as hands
and faces, remains a significant challenge due to their in-
tricate structural complexity. To address this issue, we pro-
pose a novel post-processing solution named RealisHuman.
The RealisHuman framework operates in two stages. First,
it generates realistic human parts, such as hands or faces,
using the original malformed parts as references, ensuring
consistent details with the original image. Second, it seam-
lessly integrates the rectified human parts back into their
corresponding positions by repainting the surrounding ar-
eas to ensure smooth and realistic blending. The RealisHu-
man framework significantly enhances the realism of hu-
man generation, as demonstrated by notable improvements
in both qualitative and quantitative metrics. Code is available
at https://github.com/Wangbenzhi/RealisHuman.

Introduction
Diffusion models have emerged as a powerful approach in
the field of visual generation, significantly surpassing tradi-
tional frameworks such as Generative Adversarial Networks
(GANs) (Goodfellow et al. 2014). These models function
as parameterized Markov chains, showcasing an exceptional
capability to convert random noise into complex images
through a sequential refinement process. Starting with noise,
diffusion models progressively enhance the visual quality,
ultimately producing high-fidelity representations. With on-
going technological advancements, diffusion models have
shown substantial promise in image generation and various
related tasks(Podell et al. 2024; Rombach et al. 2022a; Guo
et al. 2023).

Despite their remarkable performance in generating a di-
verse range of objects, diffusion-based models encounter
significant challenges when reconstructing realistic human

*These authors contributed equally.
† Corresponding Authors

Figure 1: Illustration of our repair results. Each pair consists
of two images: the left image is the original, and the right
image is the repair result.

features, particularly faces and hands. The intricate struc-
tural complexity of these parts, coupled with the limited
information preserved after VAE encoder downsampling
(Kingma and Welling 2013), often leads to incorrect hand
structures or distorted faces. As depicted in Fig.1, these in-
accuracies highlight the difficulties these models face in hu-
man image generation.

To address this issue, HandRefiner(Lu et al. 2023) pro-
posed a lightweight post-processing solution that employs a
conditional inpainting approach to correct malformed hands
while preserving other image regions. Utilizing a hand mesh
reconstruction model, HandRefiner ensures accurate finger
counts and hand shapes, fitting the desired hand pose. By
leveraging ControlNet modules, HandRefiner reintegrates
correct hand information into the generated images, enhanc-
ing overall image quality. However, this method has two no-
table limitations. As illustrated in Fig.3, HandRefiner often
fails to maintain consistency in skin tone and texture due to
missing reference information. It also struggles with recon-
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structing detailed hands when the regions are small. Addi-
tionally, it can introduce distortions in other areas, like the
face, compromising the overall image integrity.

In this paper, we propose a novel post-processing solution
named RealisHuman to address the challenge of refining
malformed human parts. To ensure high-quality refinements
in small regions, our method locates and crops the mal-
formed areas, allowing us to concentrate on detailed local
refinements. Compared to HandRefiner, our method is capa-
ble of refining various human parts, not just hands, while
preserving intricate details such as skin tone and texture.
This capability ensures that the refined parts are both real-
istic and consistent with the surrounding image. Addition-
ally, our approach demonstrates strong generalization capa-
bilities, effectively handling different styles of images, in-
cluding cartoons, sketches, and so on. As shown in Fig.2, our
RealisHuman framework operates in two stages. In the first
stage, our goal is to generate rectified human parts that pre-
serve the consistent details of the original malformed parts.
By using the malformed parts as references, we extract de-
tailed information through the Part Detail Encoder and DI-
NOv2, ensuring the preservation of fine-grained details and
enhancing the overall realism of the generated parts. Addi-
tionally, we incorporate 3D pose estimation results extracted
from the malformed parts to guide the generation of human
part images, ensuring that the poses are both accurate and re-
alistic. After obtaining the rectified human parts, the subse-
quent challenge is to seamlessly integrate them into the orig-
inal local image. We address this as an inpainting problem.
Initially, the rectified human parts are placed back into their
original positions, and the surrounding areas are masked. We
then train a model capable of seamlessly blending the human
parts with the surrounding areas, ensuring a smooth transi-
tion and realistic integration. Finally, the refined human parts
are pasted into the original image, completing the process of
malformed human parts refinement. This approach not only
corrects structural inaccuracies but also maintains visual co-
herence with the original image, providing a robust solution
for human parts refinement in image generation tasks. The
RealisHuman framework significantly enhances the realism
of human generation, as validated by comprehensive exper-
iments demonstrating improvements in both qualitative and
quantitative measures.

Our contributions are summarized as follows:

• We propose a novel post-processing framework named
RealisHuman to address the task of refining human parts
in generated images. Our method maintains consistent
details with the original image, effectively handles small
part refinements, and demonstrates strong generalization
across different image styles.

• We propose a novel two-stage local refinement paradigm,
which can be extended to the refinement of other struc-
turally fixed objects, such as distorted logos.

• The RealisHuman framework significantly enhances the
realism of human generation, as evidenced by extensive
experiments demonstrating enhancements in both quali-
tative and quantitative metrics.

Related Work
Diffusion Model for Image Generation. Recently, diffu-
sion models have attracted a lot of attention because of
their powerful generating ability and have become a hot re-
search direction in the field of computer vision. These mod-
els have exhibited superior performance, surpassing conven-
tional techniques due to their intrinsic capability to gener-
ate high-quality and diverse outputs. However, the high di-
mensionality of images introduces significant computational
complexity. To address this, the Latent Diffusion Model
(LDM) (Rombach et al. 2022b) was proposed. LDM per-
forms denoising within a lower-dimensional latent space
using a pre-trained autoencoder. This approach effectively
balances computational efficiency with generative perfor-
mance, representing a pivotal advancement in the scalability
of diffusion-based image generation. Despite these advance-
ments, controlling the generative process of diffusion mod-
els remains a challenge, particularly when precise seman-
tic adherence is required. Diffusion models have achieved
great success in producing realistic images that adhere to
the semantic content provided by encoding text inputs into
latent vectors via pre-trained language models like CLIP
(Radford et al. 2021). However, relying solely on text de-
scriptions for controlling the model is insufficient, especially
when it comes to describing postures and actions (Ye et al.
2023). To enhance controllability and precision in gener-
ated imagery, researchers have explored the incorporation
of additional control signals. ControlNet (Zhang, Rao, and
Agrawala 2023) employs a trainable duplicate of the Stable
Diffusion (SD) encoder architecture to extract features from
conditional inputs. Similarly, T2I-Adapter (Mou et al. 2024)
utilizes lightweight, composable adapter blocks for feature
extraction. These additional conditional layers have proven
instrumental in improving the model’s controllability under
various conditions, such as pose, mask, and edge, thereby
significantly influencing the direction of its output.
Realistic Human Image Generation. Diffusion models
have been extensively utilized for pose-conditioned human
image synthesis tasks. Animate Anyone (Hu 2024) proposes
a novel network architecture, ReferenceNet, specifically de-
signed as a symmetrical UNet structure to capture the spa-
tial details of reference images. MagicAnimate (Xu et al.
2024) adopts a similar approach but utilizes a ControlNet
specifically tailored for DensePose (Güler, Neverova, and
Kokkinos 2018) inputs instead of the more commonly used
OpenPose (Martinez 2019) keypoints, thereby offering more
precise pose guidance. Champ (Zhu et al. 2024) incorpo-
rates four distinct control signals simultaneously as con-
ditions for guiding the image generation process, namely
depth, normal, semantic, and skeleton, which are extracted
from SMPL (Loper et al. 2023) models. Despite the remark-
able advancements in generating high-quality synthetic im-
ages of humans, a persistent challenge remains in the syn-
thesis of hands. This is primarily due to the intricate nature
of hand anatomy and the difficulty in accurately depicting
hands using skeletal frameworks. Some approaches have be-
gun to specifically focus on generating higher-quality hands.
Diffusion-HPC (Weng, Bravo-Sánchez, and Yeung 2023) in-
troduces a technique that employs depth maps of human



bodies rendered from reconstructed human body meshes,
utilizing conditional diffusion models to correct morpho-
logical abnormalities in generated human bodies. Similarly,
HandRefiner (Lu et al. 2023) proposes a post-processing ap-
proach that utilizes a reconstructed hand mesh to provide
essential information about hand shape and location. While
these methods can be effective in addressing distortions in
hand morphology, they often fall short in preserving fine de-
tails such as skin tone consistency and texture.

To enhance the realism of human generation, we propose
a two-stage post-processing method named RealisHuman.
In the first stage, our method rectifies malformed parts by
utilizing detailed information and 3D pose estimation results
from the original malformed parts. In the second stage, we
seamlessly integrate the rectified human parts back into the
original image to complete the refinement process.

Method
Our goal is to refine the malformed parts while preserving
the consistent details of the original parts. The overall frame-
work pipeline is depicted in Fig.2. To ensure the realism of
the rectified human parts, the pipeline is divided into two
distinct stages. In the first stage, the rectified human parts
are generated under the guidance of the parts meshes and
the malformed part images. In the second stage, the rectified
human parts obtained from the first stage are integrated back
into the local image, followed by repainting the surrounding
region to achieve the final results.

Preliminary
Latent Diffusion Models. Our approach builds upon the
foundation of Stable Diffusion (SD)(Rombach et al. 2022a),
which originates from the Latent Diffusion Model (LDM).
LDMs are designed to operate within the latent space man-
aged by an autoencoder, specifically D(E(·)). A prime ex-
ample of these models is Stable Diffusion (SD), which
combines a Variational AutoEncoder (VAE)(Kingma and
Welling 2013) and a time-conditioned U-Net(Ronneberger,
Fischer, and Brox 2015) to estimate noise. For handling text
inputs, SD uses a CLIP ViT-L/14(Radford et al. 2021) text
encoder to transform textual queries into embeddings, de-
noted as ctext.

In the training phase, the model processes an image I and
a corresponding text condition ctext. The image is encoded
into a latent representation z0 = E(I), which then undergoes
a predefined sequence of T diffusion steps governed by a
Gaussian process, resulting in a noisy latent representation
zT ∼ N (0, 1). The objective of SD is to iteratively refine zT
back to z0, using the following loss function:

L = EE(I),ctext,ϵ∼N (0,1),t

[
∥ϵ− ϵθ(zt, t, ctext)∥22

]
, (1)

where t = 1, ..., T denotes the timestep embedding. ϵθ de-
notes the trainable components within the denoising U-Net,
which processes the noisy latents zt and the text condition
ctext. The architecture of the U-Net includes convolutional
layers (Residual Blocks) and both self- attention and cross-
attention mechanisms (Transformer Blocks).

The training process involves encoding the image into a
latent form z0 and subjecting it to a sequence of diffusion
steps, producing zT . The denoising U-Net is trained to pre-
dict and remove the noise added during these steps. Once
trained, the model can generate z0 from zT using a deter-
ministic sampling method (such as DDIM(Song, Meng, and
Ermon 2020)), and the final image is reconstructed through
the decoder D.

During inference, the initial latent zT is sampled from a
Gaussian distribution with the initial timestep T and gradu-
ally refined through iterative denoising steps to yield z0. At
each step, the U-Net predicts the noise present in the latent
features corresponding to that specific timestep. The decoder
D then reconstructs the final image from z0.

Realistic Human Parts Generation
In the first stage, our objective is to generate realistic parts
that maintain consistent detail and pose with the original im-
ages. This is achieved by using the guidance of meshes and
reference information from the malformed parts. Leverag-
ing these, we ensure the rectified human parts match the in-
tended appearance and pose.
Data preparation. Suppose we have a series of original hu-
man images and corresponding generated images that con-
tain malformed human parts, produced by algorithms such
as (Rombach et al. 2022a; Zhu et al. 2024; Hu 2024; Wang
et al. 2023a; Chang et al. 2024; Xu et al. 2024; Karras
et al. 2023). We begin by locating and cropping the target
part regions using the human skeleton estimation method
(Yang et al. 2023). After isolating the target part regions,
we employ the state-of-the-art (SOTA) mesh reconstruction
method (Pavlakos et al. 2024; Wang et al. 2023b) to estimate
the meshes for each part. Additionally, we render the meshes
to produce depth maps and binary mask maps m. To reduce
the influence of the background and focus on realistic hu-
man parts generation, we apply the mask m to filter out the
background and obtain the foreground regions of the human
parts as reference images Iref .
Part Detail Encoder. Previous image-conditioned gener-
ation tasks (Wang et al. 2023a; Karras et al. 2023) have
typically utilized the CLIP image encoder (Radford et al.
2021) to encode reference images. Specifically, these meth-
ods compress reference images from a spatial size of 224 ×
224 × 3 into a one-dimensional vector of dimension 1024,
and then employ cross-attention mechanisms to integrate the
latent representation with this vector. However, these ap-
proaches face challenges in preserving appearance details,
as encoding reference images into semantic-level features
results in a loss of spatial representations. Previous works
(Hu 2024; Cao et al. 2023; Chang et al. 2024) have demon-
strated that the self-attention mechanism can significantly
enhance the preservation of detail in reference images. In-
spired by these findings, we introduce the Part Detail En-
coder to improve the realism of rectified human parts by
integrating detailed information from the reference images
Iref . The Part Detail Encoder shares the same architec-
ture as the original Stable Diffusion (SD), comprising self-
attention and cross-attention layers, and is initialized with
the original SD UNet. To achieve this, we use the reference
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Figure 2: Details of our RealisHuman. Our method separates the task of refining malformed human parts into two distinct
stages. In the first stage, we focus on generating realistic human parts using the Part Detail Encoder. Given an image containing
malformed human parts, we begin by locating and cropping the target regions. Subsequently, we filter the background of the
target regions, creating a reference image that provides essential part details, such as skin tone. We also estimate the 3D structure
of the human parts to serve as pose guidance. Leveraging both the reference images and the part structures, we generate realistic
human parts rpart with accurate structures and detailed information. In the second stage, our goal is to seamlessly integrate the
refined human parts into the corresponding regions of the original image, resulting in the refined image I

′
. To avoid a cut-and-

paste appearance, we repaint the area between the background and the rectified human parts, ensuring a seamless integration
and a more natural overall appearance.

images as input to the Part Detail Encoder and obtain in-
termediate outputs. To better integrate detailed information,
we modify the input to the self-attention mechanism of the
UNet. Specifically, we concatenate the intermediate outputs
of the Part Detail Encoder with those of the original SD,
and use this concatenated output as the input to the self-
attention mechanism of the original SD. This approach en-
sures that fine-grained details are preserved, enhancing the
overall realism of the generated human parts. The modified
self-attention mechanism can be formulated as:

fs = softmax
(
Qo · (Ko ⊕Kh)

T

√
d

)
· (Vo ⊕ Vh), (2)

where d is the feature dimension. Qo, Ko, and Vo denote the
query, key, and value from the self-attention layers of the
original SD, respectively. Meanwhile, Kh and Vh denote the
key and value from the self-attention layers of the Part Detail
Encoder.

Meanwhile, we employ DINOv2(Oquab et al. 2023) to
get the image embedding cr of the reference image, which is
then passed into the model through a cross-attention mech-
anism. This approach supplements the semantic-level fea-
tures of the reference image. The depth map is processed
through several convolution layers to obtain the pose condi-

tion cp, which is then added to the noise latent before being
input into the denoising UNet,as described in (Hu 2024).
Training. With the design of above, the loss term of this
stage is computed as:

L1 = Ez0,cp,cr,Iref ,ϵ∼N (0,1),t[||ϵ− ϵθ(zt, cp, cr, Iref , t)||22],
(3)

where ϵθ denotes the trainable parameters of the denoising
UNet and t is the timestep embedding.

Seamless Human Parts Integration.
Another issue is that directly pasting back the rectified hu-
man parts rpart introduces copy-and-paste artifacts in the
edited region, making the generated image appear unnatural.
To address this issue, we repaint the area between the back-
ground and the rectified human parts, seamlessly integrating
them into the target region for a more natural appearance.
Data Preparation. Given an image containing human parts
like the face or hands, we first locate and crop the target
regions and obtain the binary masks using the same ap-
proach mentioned in the first stage. For each part, we dilate
its binary mask m using the kernel kd to obtain the dilated
mask md = dilate(m, kd). Additionally, we erode the binary
mask m with a small kernel ke to obtain the eroded mask



me = erode(m, ke). Using the eroded mask, we extract the
eroded human part and paste it back into the corresponding
region. The erosion process is crucial because the rectified
human parts generated in the first stage often exhibit inhar-
monious edges, which significantly affect the repainting re-
sults. By eroding the human part regions, we aim to equip
the model with the ability to complete human part edges
during the repainting process. This approach helps mitigate
issues caused by inharmonious edges, resulting in a more
natural and seamless integration of the rectified human parts
into the target regions. Suppose the local human part image
is denoted as I . The corresponding masked image and binary
mask can be formulated with Eq. 4 and Eq. 5.

If = I ⊙ (1−md) + I ⊙me, (4)

mf = md −me. (5)

Our goal is to predict the area where the binary mask mf

equals one while keeping the other areas unchanged, result-
ing in the final output I

′
. To achieve this, we first encode the

masked image If to obtain the masked latent lm = E(If ).
Next, we downsample the binary mask mf to match the size
of the masked latent lm. Similar to SD-inpainting, we add
five additional input channels for the UNet: four for the en-
coded masked image lm and one for the mask mf . Addi-
tionally, we initialize the model with SD-inpainting weights.
With this design, the loss term for this stage is computed as
follows:

L2 = Ez0,lm,mf ,ϵ∼N (0,1),t

[
∥ϵ− ϵθ(zt, lm,mf , t)∥22

]
, (6)

where t is the timestep embedding.
During inference, we paste the rectified human part rpart

back into the corresponding region and predict the unknown
area to ensure harmonious integration of the rectified human
part. The formulation of If during the inference process is
given by Eq. 7:

If = I ⊙ (1−md) + rpart ⊙me. (7)

Experiments
In this section, we begin by detailing the implementation
aspects of our approach, followed by a description of the
datasets and evaluation protocols used. Additionally, We
present comparative experiments to benchmark our method
against previous work, and conduct ablation studies to assess
the efficacy of each component in our framework.

Our RealisHuman is trained in two stages: realistic hu-
man parts generation and seamlessly integrated the human
parts. All experiments are conducted on 8 NVIDIA A800
GPUs. In the first stage, both the main UNet and the Part
Detail Encoder are initialized from Real Vision v5.1, and
all components are optimizable except for DINOv2(Oquab
et al. 2023) and VAE encoder/decoder(Kingma and Welling
2013). Training is conducted for 50,000 steps with a
batch size of 5. In the second stage, only the Inpaint-
ing U-Net is optimizable, which is initialized from SD-
inpainting(Rombach et al. 2022a). We train the Inpainting
U-Net for 20,000 steps with a batch size of 16. For both two
stages, the learning rate is set to 5e-5. The image is resize

to a resolution of 512×512. The zero-SNR(Lin et al. 2024)
and classifier-free guidance(CFG) (Ho and Salimans 2022)
are enabled. The unconditional drop rate is set to 1e-2. We
employ HaMeR(Pavlakos et al. 2024) and 3DDFAv3(Wang
et al. 2023b) to estimate the meshes for each human part.
During inference, we adopt a DDIM sampler for 20 denois-
ing steps. We set the hyper-parameter gd to 5 and ge to 0.05
times the perimeter of the mask. The images demonstrated
in our paper are generated by SDXL(Podell et al. 2024) and
SDXL-LEOSAM*.

Datasets and Evaluation Protocol.
We have collected a dataset comprising approximately
58,000 high-quality local hand images and 38,000 high-
quality local face images for training our model. To demon-
strate the effectiveness of our approach for refining mal-
formed parts, we evaluate its performance on UBC Fash-
ion(Zablotskaia et al. 2019) dataset. The human subjects in
UBC Fashion exhibit clearly visible hands and faces. UBC
Fashion consists of 500 training and 100 testing videos,
each containing roughly 350 frames. We follow the official
train/test split for both UBC Fashion.Specifically, we use
Fréchet Inception Distance (FID)(Heusel et al. 2017) and
the keypoint detection confidence scores of a hand detec-
tor or face detector(Lugaresi et al. 2019; Zhang et al. 2020)
to evaluate the plausibility of the generated human parts.

Results and Comparisons.
We generate human images with pose guidance on the UBC
Fashion dataset using the most advanced human synthesis
methods(Hu 2024; Xu et al. 2024; Zhu et al. 2024). After
generating the human images, we located and cropped the
regions containing human parts and applied our RealisHu-
man framework to refine the malformed parts. To mitigate
the influence of the relatively small size of human parts in
the original images and to better evaluate the metrics, we fo-
cused the evaluation specifically on the regions containing
human parts.

Method Hand Face
FID ↓ Det. Conf. ↑ FID ↓ Det. Conf. ↑

AnimateAnyone(Hu 2024) 14.26 0.86 20.55 0.82
AnimateAnyone+Ours 13.02 0.91 15.44 0.90
Champ(Zhu et al. 2024) 27.28 0.87 20.11 0.85
Champ+Ours 25.58 0.92 16.74 0.92
MagicAnimate(Xu et al. 2024) 57.73 0.90 43.12 0.87
MagicAnimate+Ours 55.18 0.94 38.81 0.92

Table 1: Comparison of FID and Det. Conf. scores before
and after using our method.

In Tab.1, we report the FID and Det. Conf. scores before
and after using our RealisHuman for both face and hand
regions. The results demonstrate the effectiveness of our
method. Specifically, we observe significant improvements
in both metrics after applying our refinement process. The
reduction in FID scores indicates that the refined images are
perceptually closer to real images, showcasing enhanced re-
alism. Similarly, the increase in Det. Conf. scores reflects

*https://civitai.com/models/43977/leosams-helloworld-xl



Figure 3: Comparison of hand refinement results. Each set of images displays, from left to right, the original image, our method’s
repair result, and the HandRefiner method’s repair result.

improved detection confidence by the detectors, highlighting
the structural accuracy and plausibility of the refined face
and hand regions.

To evaluate the effectiveness of our method in refining
hand images, we compare our method with the popular mal-
formed hands refining method HandRefiner in Fig.3. Addi-
tionally, we conduct a detailed analysis to illustrate the ad-
vantages of our approach. As shown in Fig.3, each com-
parison figure consists of three horizontally aligned im-
ages: from left to right, they display the original image, our
method’s repair result, and the HandRefiner method’s re-
pair result. This figure presents a comprehensive compari-
son between our method and the HandRefiner method across
several critical aspects: (a) Preservation of Hand Details:
Our method excels at maintaining and matching the origi-
nal details, such as the skin tone of the hands. It demon-
strates superior consistency in preserving intricate details,
accurately restoring textures and fine features of the hands.
As a result, the repaired hands have a more natural and real-
istic appearance. (b) Effectiveness in Small Hand Repair:
Compare to HandRefiner, our method is particularly effec-
tive in repairing smaller hands, meticulously restoring their
details and shapes. (c) Preservation of Other Regions: Un-
like HandRefiner, which can cause distortions in other ar-
eas such as the face while repairing hands, our method pre-
serves the overall integrity and appearance of the image,

ensuring that other regions remain unaffected. Effectively
showcases these advantages, highlighting the superior per-
formance of our method in hand repair tasks compared to
the HandRefiner method. This comparison underscores the
efficacy and reliability of our approach in producing high-
quality hand restorations.

Additionally, we demonstrate the capability of RealisHu-
man in facial refinement. As shown in Fig.4, our method
effectively addresses issues such as distorted facial features
and unfocused eyes in the original images, highlighting the
efficacy of our approach. The results illustrate that Real-
isHuman can significantly enhance the realism and accu-
racy of facial features, further validating the robustness, ver-
satility, and strong generalization capability of our method
across various styles of human image restoration. For addi-
tional examples and details, please refer to the supplemen-
tary materials.

Abalation Study.
Effect of the second stage. As discussed above, we address
the issue of copy-and-paste artifacts by repainting the tran-
sition area between the background and the rectified human
parts, ensuring seamless integration into the target region
for a more natural appearance. Fig.6 compares the results
of directly pasting the rectified human part rpart with our
method. It can be observed that our approach effectively in-



original

refined

Figure 4: Comparison of face refinement results. The first row shows the original images, and the second row shows the images
after face refinement.

tegrates the rectified human parts into the surrounding area
without introducing copy-and-paste artifacts.

w/o
 stage-two

ours

Figure 5: Comparison of directly pasting the rectified hu-
man parts versus our method. The first row shows the results
of direct pasting, which exhibit visible artifacts. The second
row demonstrates the effectiveness of our method in achiev-
ing seamless integration.

Effect of the eroded mask me. As discussed above, the
eroded mask me is used to mitigate the effects of inharmo-
nious edges in the second stage. Without the eroded mask,
these inharmonious edges can hinder the seamless integra-
tion of the rectified human parts with their surroundings,
leading to the generation of discordant elements such as hair,
watches, and other artifacts. We illustrate the impact of the
eroded mask in Fig.6, comparing images processed with and
without it. The first row shows the results without the eroded
mask, where noticeable artifacts are present. The second row
demonstrates the results when using the eroded mask, which
effectively reduces edge artifacts and achieves a smoother
integration.

Limitations and Discussion
While our method has demonstrated notable improvements
in refining and reconstructing human hands, it still faces sev-
eral challenges, as illustrated in Fig.7 . Firstly, the method
may struggle to accurately reconstruct interaction between
hands and objects. Secondly, it may fail to maintain consis-
tency in the presence of objects. Thirdly, when the original
hand is severely distorted, the method may be unable to es-
timate the correct hand pose, leading to unsuccessful hand

w/o ��

ours

Figure 6: Comparison of results with and without the eroded
mask me. The first row shows visible edge artifacts without
the eroded mask. The second row demonstrates improved
integration using the eroded mask, reducing edge artifacts.

reconstruction. Addressing these issues will be the focus
of our future work, potentially incorporating more sophisti-
cated modeling techniques or leveraging additional contex-
tual information to improve performance in these areas.

original

refined

(a) (b) (c)

Figure 7: Illustration of the limitations of our method.

Conclusion
In this paper, we introduced RealisHuman, a novel post-
processing solution for refining malformed human parts in
generated images. Our method operates in two stages: first,
generating realistic human parts using the original mal-
formed human parts as the reference to maintain consis-
tent details; second, seamlessly integrating the rectified hu-



man parts by repainting the surrounding areas. This frame-
work effectively addresses the challenges of human parts
generation and can be extended to other local refinement
tasks, such as logo refinement. Comprehensive experiments
demonstrate significant improvements in both qualitative
and quantitative measures, validating the effectiveness and
robustness of our approach.
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